Mostrar el registro sencillo del ítem
dc.contributor.author
Andreani, Roberto
dc.contributor.author
Fazzio, Nadia Soledad
dc.contributor.author
Schuverdt, María Laura
dc.contributor.author
Secchin, Leonardo D.
dc.date.available
2020-11-24T17:31:52Z
dc.date.issued
2019-03
dc.identifier.citation
Andreani, Roberto; Fazzio, Nadia Soledad; Schuverdt, María Laura; Secchin, Leonardo D.; A Sequential Optimality Condition Related to the Quasi-normality Constraint Qualification and Its Algorithmic Consequences; Society for Industrial and Applied Mathematics; Siam Journal On Optimization; 29; 1; 3-2019; 743-766
dc.identifier.issn
1052-6234
dc.identifier.uri
http://hdl.handle.net/11336/118899
dc.description.abstract
In the present paper, we prove that the augmented Lagrangian method converges to KKT pointsunder the quasinormality constraint qualification, which is associated with the external penalty theory. An interesting consequence is that the Lagrange multipliers estimates computed by the methodremain bounded in the presence of the quasinormality condition. In order to establish a more general convergence result, a new sequential optimality condition for smooth constrained optimization,called PAKKT, is defined. The new condition takes into account the sign of the dual sequence,constituting an adequate sequential counterpart to the (enhanced) Fritz-John necessary optimalityconditions proposed by Hestenes, and later extensively treated by Bertsekas. PAKKT points aresubstantially better than points obtained by the classical Approximate KKT (AKKT) condition,which has been used to establish theoretical convergence results for several methods. In particular,we present a simple problem with complementarity constraints such that all its feasible points areAKKT, while only the solutions and a pathological point are PAKKT. This shows the efficiency of themethods that reach PAKKT points, particularly the augmented Lagrangian algorithm, in such problems. We also provided the appropriate strict constraint qualification associated with the PAKKTsequential optimality condition, called PAKKT-regular, and we prove that it is strictly weaker thanboth quasinormality and cone continuity property. PAKKT-regular connects both branches of theseindependent constraint qualifications, generalizing all previous theoretical convergence results for theaugmented Lagrangian method in the literature.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Society for Industrial and Applied Mathematics
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AUGMENTED LAGRANGIAN METHODS
dc.subject
GLOBAL CONVERGENCE
dc.subject
CONSTRAINT QUALIFICATIONS
dc.subject
QUASINORMALITY
dc.subject
SEQUENTIAL OPTIMALITY CONDITIONS
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A Sequential Optimality Condition Related to the Quasi-normality Constraint Qualification and Its Algorithmic Consequences
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-19T15:44:27Z
dc.identifier.eissn
1095-7189
dc.journal.volume
29
dc.journal.number
1
dc.journal.pagination
743-766
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Philadelphia
dc.description.fil
Fil: Andreani, Roberto. Universidade Estadual de Campinas; Brasil
dc.description.fil
Fil: Fazzio, Nadia Soledad. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.description.fil
Fil: Schuverdt, María Laura. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.description.fil
Fil: Secchin, Leonardo D.. Universidade Federal do Espírito Santo; Brasil
dc.journal.title
Siam Journal On Optimization
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/10.1137/17M1147330
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1137/17M1147330
Archivos asociados