Mostrar el registro sencillo del ítem

dc.contributor.author
Cintas, Celia  
dc.contributor.author
Delrieux, Claudio Augusto  
dc.contributor.author
Navarro, Jose Pablo  
dc.contributor.author
Quinto-sánchez, Mirsha Emmanuel  
dc.contributor.author
Pazos, Bruno Alfredo  
dc.contributor.author
Gonzalez-Jose, Rolando  
dc.date.available
2020-11-24T14:12:11Z  
dc.date.issued
2019-04  
dc.identifier.citation
Cintas, Celia; Delrieux, Claudio Augusto; Navarro, Jose Pablo; Quinto-sánchez, Mirsha Emmanuel; Pazos, Bruno Alfredo; et al.; Automatic ear detection and segmentation over partially occluded profile face images; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science and Technology; 19; 8; 4-2019; 81-90  
dc.identifier.issn
1666-6038  
dc.identifier.uri
http://hdl.handle.net/11336/118835  
dc.description.abstract
La detección automática del pabellón auditivo en imágenes y video, es una funcionalidad crecientemente requerida en varios contextos. Entre ellos podemos citar: identificación biométrica no invasiva, análisis biomédicos, estudios forenses, entre otros. En los sistemas de reconocimiento biométrico, la detección rápida y confiable del pabellón auditivo es un paso fundamental dentro del procesamiento. Las aproximaciones existentes con respecto a esta detección no son robustas, siendo susceptibles a fallas en la presencia de oclusiones parciales, accesorios como aros o piercings, o condiciones desfavorables en la cámara o la iluminación. Además, gran parte de los sistemas biométricos de la actualidad asumen que el dato de entrada será la región de interés que contiene el pabellón auditivo, lo cual limita su uso y reduce la exactitud global de reconocimiento. En este trabajo se evalúa el uso de redes convolucionales (Convolutional Neural Networks o CNNs) junto con Morfometría Geométrica para la detección automática del pabellón auditivo y la segmentación de los píxeles correspondientes al mismo mediante el uso de un algoritmo de Convex Hull. Luego del entrenamiento, la red CNN puede detectar el pabellón auditivo sobre imágenes de rostro en vista lateral, inclusive en la presencia de oclusiones parciales. Se analiza la performance del método de detección y segmentación de orejas sobre imágenes con oclusiones parciales correspondientes al conjunto de datos CVL.  
dc.description.abstract
Automated, non invasive ear detection in images and video is becoming increasingly required in several contexts,  including  nonivasive  biometric  identification, biomedical analysis, forensics, and many others.  In biometric recognition systems, fast and robust ear de-tection is a crucial step within the recognition pipeline.Existing approaches to ear detection are susceptible to fail in the presence of typical everyday situations that prevent a crisp imaging of the ears, like partial occlusions, ear accessories, or uncontrolled camera and illumination conditions. Even more, most of the proposed solutions work efficiently only within a previously detected rectangular region of interest, which limits their applicability and lowers the accuracy of the overall detection. In this paper we evaluate the use of Convolutional Neural Networks (CNNs) together with Geometric Morphometrics (GM) for automatic ear detection in the presence of partial occlusions, and a Convex Hull algorithm for the ear area segmentation.  A CNN was trained with a set of ear images landmarked by experts using GM to achieve high consistency. After training, the CNN is able to detect ears over profile faces, even in the presence of partial occlusions. We analyze the performance of the proposed ear detection and segmentation method over partially occluded ear images using the CVL Dataset.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Universidad Nacional de La Plata. Facultad de Informática  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/  
dc.subject
BIOMETRICS  
dc.subject
CONVEX HULL  
dc.subject
DEEP LEARNING  
dc.subject
EAR DETECTION  
dc.subject
OCCLUSSION  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ciencias de la Salud  
dc.subject.classification
Ciencias de la Salud  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Automatic ear detection and segmentation over partially occluded profile face images  
dc.title
Detección y segmentación automática de oídos en imágenes de rostro con vista lateral parcialmente ocluıda  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-10-22T18:18:05Z  
dc.journal.volume
19  
dc.journal.number
8  
dc.journal.pagination
81-90  
dc.journal.pais
Argentina  
dc.journal.ciudad
La Plata  
dc.description.fil
Fil: Cintas, Celia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina  
dc.description.fil
Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Navarro, Jose Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina  
dc.description.fil
Fil: Quinto-sánchez, Mirsha Emmanuel. Universidad Nacional Autónoma de México; México  
dc.description.fil
Fil: Pazos, Bruno Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Universidad Nacional de la Patagonia "san Juan Bosco". Facultad de Ingenieria - Sede Trelew.; Argentina  
dc.description.fil
Fil: Gonzalez-Jose, Rolando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina  
dc.journal.title
Journal of Computer Science and Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.24215/16666038.19.e08  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journal.info.unlp.edu.ar/JCST/article/view/1097