Mostrar el registro sencillo del ítem

dc.contributor.author
Fabricius, Gabriel  
dc.contributor.author
Maltz, Alberto Leonardo  
dc.date.available
2020-11-19T13:48:00Z  
dc.date.issued
2019-10  
dc.identifier.citation
Fabricius, Gabriel; Maltz, Alberto Leonardo; Exploring the threshold of epidemic spreading for a stochastic SIR model with local and global contacts; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 540; 123208; 10-2019; 1-12  
dc.identifier.issn
0378-4371  
dc.identifier.uri
http://hdl.handle.net/11336/118645  
dc.description.abstract
The spread of an epidemic process is considered in the context of a spatial SIR stochastic model that includes a parameter 0 ≤ p ≤ 1 that assigns weights p and 1−p to global and local infective contacts respectively. The model was previously studied by other authors in different contexts. In this work we characterized the behavior of the system around the threshold for epidemic spreading. We first used a deterministic approximation of the stochastic model and checked the existence of a threshold value of p for exponential epidemic spread. An analytical expression, which defines a function of the quotient α between the transmission and recovery rates, is obtained to approximate this threshold. We then performed different analyzes based on intensive stochastic simulations and found that this expression is also a good estimate for a similar threshold value of p obtained in the stochastic model. The dynamics of the average number of infected individuals and the average size of outbreaks show a behavior across the threshold that is well described by the deterministic approximation. The distributions of the outbreak sizes at the threshold present common features for all the cases considered corresponding to different values of α > 1. These features are otherwise already known to hold for the standard stochastic SIR model at its threshold, α = 1: (i) the probability of having an outbreak of size n goes asymptotically as n −3/2 for an infinite system, (ii) the maximal size of an outbreak scales as N 2/3 for a finite system of size N.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EPIDEMICS  
dc.subject
SIR  
dc.subject
EXPONENTIAL GROWTH  
dc.subject
THRESHOLD  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Exploring the threshold of epidemic spreading for a stochastic SIR model with local and global contacts  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-17T16:37:15Z  
dc.journal.volume
540  
dc.journal.number
123208  
dc.journal.pagination
1-12  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Fabricius, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Maltz, Alberto Leonardo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina  
dc.journal.title
Physica A: Statistical Mechanics and its Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0378437119318035  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.physa.2019.123208