Mostrar el registro sencillo del ítem

dc.contributor.author
Montoya, Sandra  
dc.contributor.author
Sánchez, Óscar Julián  
dc.contributor.author
Levin, Laura Noemí  
dc.contributor.other
Castillo, Luis Fernando  
dc.contributor.other
Cristancho, Marco  
dc.contributor.other
Isaza, Gustavo  
dc.contributor.other
Pinzón, Andrés  
dc.contributor.other
Corchado Rodríguez, Juan Manuel  
dc.date.available
2020-11-17T14:24:21Z  
dc.date.issued
2014  
dc.identifier.citation
Montoya, Sandra; Sánchez, Óscar Julián; Levin, Laura Noemí; Mathematical Modeling of Lignocellulolytic Enzyme Production from Three Species of White Rot Fungi by Solid-State Fermentation; Springer; 232; 2014; 371-377  
dc.identifier.isbn
978-3-319-01567-5  
dc.identifier.uri
http://hdl.handle.net/11336/118510  
dc.description.abstract
This research was conducted by growing three species of white-rot fungi (Coriolus versicolor, Lentinus edodes and Pleurotus ostreatus) on twelve formulations of solid substrates using mixtures of different lignocellulosic materials, calcium carbonate salts and copper sulphate (II). The objective of this study was to propose a mathematical model to describe the biomass growth, lignocellulolytic enzymes biosynthesis, production and consumption of reducing sugars, consumption of cellulose and hemicellulose, and lignin degradation. The three species of fungi grew well on all substrate formulations. The response obtained was evaluated by the titles of all enzymatic activities for several combinations fungus – substrate. C. versicolor had the highest capacity to degrade lignin, cellulose and hemicellulose for all combinations, with 65% as the maximum lignin degradation for F1 combination, and 43% cellulose degradation for F9 combination. The mathematical model proposed for C. versicolor consisted of eleven differential equations to describe the behavior of the cultivation system from the experimental data of all the resulting combinations in order to obtain the largest capacity degradation of lignocellulosic substrates by the fungus. In this work, we present the modeling results for combination F9 fungus – substrate combination, which showed the best behavior related to the degradation of lignocellulosic materials used. The results obtained demonstrated that the model proposed represents a powerful tool to design solid-substrate fermentation processes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Mathematical Model  
dc.subject
Lignocellulolytic Enzymes Biosynthesis  
dc.subject
White rot fungi  
dc.subject
Solid-State Fermentation  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Mathematical Modeling of Lignocellulolytic Enzyme Production from Three Species of White Rot Fungi by Solid-State Fermentation  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2020-08-05T15:34:01Z  
dc.journal.volume
232  
dc.journal.pagination
371-377  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Montoya, Sandra. Universidad de Caldas; Colombia  
dc.description.fil
Fil: Sánchez, Óscar Julián. Universidad de Caldas; Colombia  
dc.description.fil
Fil: Levin, Laura Noemí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botánica; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-319-01568-2_52  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-319-01568-2_52  
dc.source.titulo
Advances in Computational Biology