Artículo
Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data
Fecha de publicación:
11/2010
Editorial:
Elsevier
Revista:
Computers and Eletronics in Agriculture
ISSN:
0168-1699
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The development of molecular techniques for genetic analysis has enabled great advances in cereal breeding. However, their usefulness in hybrid breeding, particularly in assigning new lines to heterotic groups previously established, still remains unsolved. In this work we evaluate the performance of several state-of-art multiclass classifiers onto three molecular marker datasets representing a broad spectrum of maize heterotic patterns. Even though results are variable, they suggest supervised learning algorithms as a valuable complement to traditional breeding programs.
Palabras clave:
HETEROTIC GROUPS
,
MAIZE
,
SUPERVISED LEARNING
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Ornella, Leonardo Alfredo; Tapia, Elizabeth; Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data; Elsevier; Computers and Eletronics in Agriculture; 74; 2; 11-2010; 250-257
Compartir
Altmétricas