Artículo
On the measure of polynomials attaining maxima on a vertex
Fecha de publicación:
03/2019
Editorial:
Element
Revista:
Mathematical Inequalities & Applications
ISSN:
1331-4343
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We calculate the probability that a k-homogeneous polynomial in n variables attain a local maximum on a vertex in terms of the “sharpness” of the vertex, and then study the dependence of this measure on the growth of dimension and degree. We find that the behavior of vertices with orthogonal edges is markedly different to that of sharper vertices. If the degree k grows with the dimension n, the probability that a polynomial attain a local maximum tends to 1/2, but for orthogonal edges the growth-rate of k must be larger than nlnn, while for sharper vertices a growth-rate larger than lnn will suffice.
Palabras clave:
POLYNOMIAL, MEASURE OF POLYNOMIALS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Pinasco, Damian; Zalduendo, Ignacio Martin; On the measure of polynomials attaining maxima on a vertex; Element; Mathematical Inequalities & Applications; 22; 2; 3-2019; 421-432
Compartir
Altmétricas