Artículo
Hopf Bifurcation Analysis of Distributed Delay Equations with Applications to Neural Networks
Fecha de publicación:
11/2015
Editorial:
World Scientific
Revista:
International Journal Of Bifurcation And Chaos
ISSN:
0218-1274
1793-6551
1793-6551
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we study how to capture smooth oscillations arising from delay-differential equations with distributed delays. For this purpose, we introduce a modified version of the frequency-domain method based on the Graphical Hopf Bifurcation Theorem. Our approach takes advantage of a simple interpretation of the distributed delay effect by means of some Laplace-transformed properties. Our theoretical results are illustrated through an example of two coupled neurons with distributed delay in their communication channel. For this system, we compute several bifurcation diagrams and approximations of the amplitudes of periodic solutions. In addition, we establish analytical conditions for the appearance of a double zero bifurcation and investigate the unfolding by the proposed methodology.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIIE)
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Citación
Gentile, Franco Sebastián; Moiola, Jorge Luis; Hopf Bifurcation Analysis of Distributed Delay Equations with Applications to Neural Networks; World Scientific; International Journal Of Bifurcation And Chaos; 25; 11; 11-2015; 1-15
Compartir
Altmétricas