Artículo
Convergence of p-stable random fractional wavelet series and some of Its properties
Fecha de publicación:
09/2020
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
Ieee Transactions On Information Theory
ISSN:
0018-9448
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
For appropriate orthonormal wavelet basis {ψ^e_jk} j∈Zk∈Z^de∈{0,1}^d, constants p and γ , if I_γ denotes the Riesz fractional integral operator of order γ and (ηjke)j∈Zk∈Z^de∈{0,1}^d a sequence of independent identically distributed symmetric p -stable random variables, we investigate the convergence of the series ∑_jkeηjkeI_γψ^ejk . Similar results are also studied for modified fractional integral operators. Finally, some geometric properties related to self similarity are studied.
Palabras clave:
FRACTIONAL PROCESSES
,
WAVELETS
,
P-STABLE RANDOM PROCESSES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Medina, Juan Miguel; Dobarro, Fernando Ruben; Cernuschi Frias, Bruno; Convergence of p-stable random fractional wavelet series and some of Its properties; Institute of Electrical and Electronics Engineers; Ieee Transactions On Information Theory; 66; 9; 9-2020; 5866-5874
Compartir
Altmétricas