Mostrar el registro sencillo del ítem
dc.contributor.author
Alvarez, Agustin
dc.contributor.author
Boente Boente, Graciela Lina
dc.contributor.author
Kudraszow, Nadia Laura
dc.date.available
2020-11-13T17:31:49Z
dc.date.issued
2019-03
dc.identifier.citation
Alvarez, Agustin; Boente Boente, Graciela Lina; Kudraszow, Nadia Laura; Robust sieve estimators for functional canonical correlation analysis; Elsevier Inc; Journal Of Multivariate Analysis; 170; 3-2019; 46-62
dc.identifier.issn
0047-259X
dc.identifier.uri
http://hdl.handle.net/11336/118343
dc.description.abstract
In this paper, we propose robust estimators for the first canonical correlation and directions of random elements on Hilbert separable spaces by combining sieves and robust association measures, leading to Fisher-consistent estimators for appropriate choices of the association measure. Under regularity conditions, the resulting estimators are consistent. The robust procedure allows us to construct detection rules to identify possible influential observations. The finite sample performance is illustrated through a simulation study in which contaminated data is included. The benefits of considering robust estimators are also illustrated on a real data set where the detection methods reveal the presence of influential observations for the first canonical directions that would be missed otherwise.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Inc
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CANONICAL CORRELATION
dc.subject
FISHER-CONSISTENCY
dc.subject
FUNCTIONAL DATA
dc.subject
ROBUST ESTIMATION
dc.subject
SIEVES
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Robust sieve estimators for functional canonical correlation analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-05T18:32:54Z
dc.journal.volume
170
dc.journal.pagination
46-62
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Alvarez, Agustin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
dc.description.fil
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Kudraszow, Nadia Laura. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.journal.title
Journal Of Multivariate Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jmva.2018.03.003
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X17305602
Archivos asociados