Mostrar el registro sencillo del ítem

dc.contributor.author
Alvarez, Agustin  
dc.contributor.author
Boente Boente, Graciela Lina  
dc.contributor.author
Kudraszow, Nadia Laura  
dc.date.available
2020-11-13T17:31:49Z  
dc.date.issued
2019-03  
dc.identifier.citation
Alvarez, Agustin; Boente Boente, Graciela Lina; Kudraszow, Nadia Laura; Robust sieve estimators for functional canonical correlation analysis; Elsevier Inc; Journal Of Multivariate Analysis; 170; 3-2019; 46-62  
dc.identifier.issn
0047-259X  
dc.identifier.uri
http://hdl.handle.net/11336/118343  
dc.description.abstract
In this paper, we propose robust estimators for the first canonical correlation and directions of random elements on Hilbert separable spaces by combining sieves and robust association measures, leading to Fisher-consistent estimators for appropriate choices of the association measure. Under regularity conditions, the resulting estimators are consistent. The robust procedure allows us to construct detection rules to identify possible influential observations. The finite sample performance is illustrated through a simulation study in which contaminated data is included. The benefits of considering robust estimators are also illustrated on a real data set where the detection methods reveal the presence of influential observations for the first canonical directions that would be missed otherwise.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Inc  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CANONICAL CORRELATION  
dc.subject
FISHER-CONSISTENCY  
dc.subject
FUNCTIONAL DATA  
dc.subject
ROBUST ESTIMATION  
dc.subject
SIEVES  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust sieve estimators for functional canonical correlation analysis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-05T18:32:54Z  
dc.journal.volume
170  
dc.journal.pagination
46-62  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Alvarez, Agustin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Kudraszow, Nadia Laura. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.journal.title
Journal Of Multivariate Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jmva.2018.03.003  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X17305602