Mostrar el registro sencillo del ítem

dc.contributor.author
Freixas Lemus, Victor Manuel  
dc.contributor.author
Ondarse Alvarez, Dianelys  
dc.contributor.author
Tretiak, Sergei  
dc.contributor.author
Makhov, D.V.  
dc.contributor.author
D. V. Shalashilin  
dc.contributor.author
Fernández Alberti, Sebastián  
dc.date.available
2020-11-13T13:36:35Z  
dc.date.issued
2019-03  
dc.identifier.citation
Freixas Lemus, Victor Manuel; Ondarse Alvarez, Dianelys; Tretiak, Sergei; Makhov, D.V.; D. V. Shalashilin; et al.; Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks; American Institute of Physics; Journal of Chemical Physics; 150; 12; 3-2019; 1-11  
dc.identifier.issn
0021-9606  
dc.identifier.uri
http://hdl.handle.net/11336/118322  
dc.description.abstract
The efficiency of the intramolecular energy transfer in light harvesting dendrimers is determined by their well-defined architecture with high degree of order. After photoexcitation, through-space and through-bond energy transfer mechanisms can take place, involving vectorial exciton migration among different chromophores within dendrimer highly branched structures. Their inherent intramolecular energy gradient depends on how the multiple chromophoric units have been assembled, subject to their inter-connects, spatial distances, and orientations. Herein, we compare the photoinduced nonadiabatic molecular dynamics simulations performed on a set of different combinations of a chain of linked dendrimer building blocks composed of two-, three-, and four-ring linear polyphenylene chromophoric units. The calculations are performed with the recently developed ab initio multiple cloning-time dependent diabatic basis implementation of the Multiconfigurational Ehrenfest (MCE) approach. Despite differences in short time relaxation pathways and different initial exciton localization, at longer time scales, electronic relaxation rates and exciton final redistributions are very similar for all combinations. Unlike the systems composed of two building blocks, considered previously, for the larger 3 block systems here we observe that bifurcation of the wave function accounted by cloning is important. In all the systems considered in this work, at the time scale of few hundreds of femtoseconds, cloning enhances the electronic energy relaxation by ∼13% compared to that of the MCE method without cloning. Thus, accurate description of quantum effects is essential for understanding of the energy exchange in dendrimers both at short and long time scales.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DYNAMICS  
dc.subject
EHRENFEST  
dc.subject
CLONING  
dc.subject
POLYMERS  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-11T12:32:30Z  
dc.journal.volume
150  
dc.journal.number
12  
dc.journal.pagination
1-11  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Freixas Lemus, Victor Manuel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina  
dc.description.fil
Fil: Tretiak, Sergei. Los Alamos National Laboratory; Estados Unidos  
dc.description.fil
Fil: Makhov, D.V.. University Of Leeds; Reino Unido  
dc.description.fil
Fil: D. V. Shalashilin. University Of Leeds; Reino Unido  
dc.description.fil
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal of Chemical Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5086680  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.5086680