Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Consistent gradient of performance and decoding of stimulus type and valence from local and network activity

Hesse Rizzi, Eugenia FátimaIcon ; Mikulan, Ezequiel PabloIcon ; Sitt, Jacobo DiegoIcon ; García, María del Carmen; Silva, WalterIcon ; Ciraolo, Carlos; Vaucheret Paz, Esteban Fabian; Raimondo, FedericoIcon ; Baglivo, Fabricio Hugo; Gonzalez Adolfi, FedericoIcon ; Herrera, Eduar; Bekinschtein, Tristán AndrésIcon ; Petroni, Agustín; Lew, Sergio Eduardo; Sedeño, LucasIcon ; García, Adolfo MartínIcon ; Ibañez, Agustin MarianoIcon
Fecha de publicación: 02/2019
Editorial: Institute of Electrical and Electronics Engineers
Revista: Ieee Transactions On Neural Systems And Rehabilitation Engineering
ISSN: 1534-4320
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Psicología; Lingüística

Resumen

The individual differences approach focuses on the variation of behavioral and neural signatures across subjects. In this context, we searched for intracranial neural markers of performance in three individuals with distinct behavioral patterns (efficient, borderline, and inefficient) in a dual-valence task assessing facial and lexical emotion recognition. First, we performed a preliminary study to replicate well-established evoked responses in relevant brain regions. Then, we examined time series data and network connectivity, combined with multivariate pattern analyses and machine learning, to explore electrophysiological differences in resting-state versus task-related activity across subjects. Next, using the same methodological approach, we assessed the neural decoding of performance for different dimensions of the task. The classification of time series data mirrored the behavioral gradient across subjects for stimulus type but not for valence. However, network-based measures reflected the subjects' hierarchical profiles for both stimulus types and valence. Therefore, this measure serves as a sensitive marker for capturing distributed processes such as emotional valence discrimination, which relies on an extended set of regions. Network measures combined with classification methods may offer useful insights to study single subjects and understand inter-individual performance variability. Promisingly, this approach could eventually be extrapolated to other neuroscientific techniques.
Palabras clave: EMOTIONAL VALENCE , FACIAL PROCESSING , INFORMATION SHARING CONNECTIVITY , INTRACRANIAL RECORDINGS , LEXICAL PROCESSING , MULTIVARIATE ANALYSIS PATTERNS
Ver el registro completo
 
Archivos asociados
Tamaño: 749.6Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/118314
URL: https://ieeexplore.ieee.org/document/8663404?arnumber=8663404&source=authoralert
DOI: http://dx.doi.org/10.1109/TNSRE.2019.2903921
Colecciones
Articulos(INCYT)
Articulos de INSTITUTO DE NEUROCIENCIAS COGNITIVAS Y TRASLACIONAL
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Hesse Rizzi, Eugenia Fátima; Mikulan, Ezequiel Pablo; Sitt, Jacobo Diego; García, María del Carmen; Silva, Walter; et al.; Consistent gradient of performance and decoding of stimulus type and valence from local and network activity; Institute of Electrical and Electronics Engineers; Ieee Transactions On Neural Systems And Rehabilitation Engineering; 27; 4; 2-2019; 619-629
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES