Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Predicting user reactions to Twitter feed content based on personality type and social cues

Gallo, Fabio RafaelIcon ; Simari, GerardoIcon ; Martinez, Maria VaninaIcon ; Falappa, Marcelo AlejandroIcon
Fecha de publicación: 01/09/2020
Editorial: Elsevier Science
Revista: Future Generation Computer Systems
ISSN: 0167-739X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

The events in the past few years clearly indicate that the modern social, political and economical landscapes are heavily influenced by how information flows through social networks. For instance, the recent outcomes of the US presidential elections and the Brexit vote show that misinformation and otherwise influencing content can affect events of great importance. In this paper, we adopt a simplified version of the recently proposed Network Knowledge Base (NKB) model to tackle the problem of predicting basic actions that a user can take given the content of their social media feeds: either take action (by reusing content seen in their feeds or creating new one), or otherwise take no action. We propose processing raw data obtained from social media based on the framework defined by the NKB model, and then formulate an action/no action prediction task that takes as input five features (including the user's personality type and other social cues), and then go on to show—via an extensive empirical evaluation with real-world Twitter data—that machine learning classification algorithms can be successfully applied in this setting to make predictions about user reactions. The main result obtained is that, out of the features considered, personality type based on the Big-5 (also known as OCEAN) model is the most impactful; furthermore, though the rest of the features taken individually do not have a significant impact, the best results are obtained when they are all taken together. This is a first step in applying the NKB model towards understanding the effect of pathogenic social media phenomena such as fake news, how they spread via cascades, and how to counteract their ill effects.
Palabras clave: HYBRID ARTIFICIAL INTELLIGENCE MODELS , SOCIAL KNOWLEDGE BASES , SOCIAL NETWORKS
Ver el registro completo
 
Archivos asociados
Tamaño: 6.958Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/118257
URL: https://www.sciencedirect.com/science/article/abs/pii/S0167739X19304091
DOI: http://dx.doi.org/10.1016/j.future.2019.10.044
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Citación
Gallo, Fabio Rafael; Simari, Gerardo; Martinez, Maria Vanina; Falappa, Marcelo Alejandro; Predicting user reactions to Twitter feed content based on personality type and social cues; Elsevier Science; Future Generation Computer Systems; 110; 1-9-2020; 918-930
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES