Artículo
Self-similar measures: asymptotic bounds for the dimension and Fourier decay of smooth images
Fecha de publicación:
02/2018
Editorial:
Suomalainen Tiedeakatemia
Revista:
Annales Academiae Scientiarum Fennicae. Mathematica
ISSN:
1239-629X
e-ISSN:
1798-2383
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
R. Kaufman and M. Tsujii proved that the Fourier transform of self-similar measures has a power decay outside of a sparse set of frequencies. We present a version of this result for homogeneous self-similar measures, with quantitative estimates, and derive several applications: (1) non-linear smooth images of homogeneous self-similar measures have a power Fourier decay, (2) convolving with a homogeneous self-similar measure increases correlation dimension by a quantitative amount, (3) the dimension and Frostman exponent of (biased) Bernoulli convolutions tend to 1 as the contraction ratio tends to 1, at an explicit quantitative rate.
Palabras clave:
Fourier decay
,
self-similar measures
,
correlation dimension
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Mosquera, Carolina Alejandra; Shmerkin, Pablo Sebastian; Self-similar measures: asymptotic bounds for the dimension and Fourier decay of smooth images; Suomalainen Tiedeakatemia; Annales Academiae Scientiarum Fennicae. Mathematica; 43; 2; 2-2018; 823-834
Compartir