Artículo
The covering type of closed surfaces and minimal triangulations
Fecha de publicación:
08/2019
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Combinatorial Theory Series A
ISSN:
0097-3165
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The notion of covering type was recently introduced by Karoubi and Weibel to measure the complexity of a topological space by means of good coverings. When X has the homotopy type of a finite CW-complex, its covering type coincides with the minimum possible number of vertices of a simplicial complex homotopy equivalent to X. In this article we compute the covering type of all closed surfaces. Our results completely settle a problem posed by Karoubi and Weibel, and shed more light on the relationship between the topology of surfaces and the number of vertices of minimal triangulations from a homotopy point of view.
Palabras clave:
COVERING TYPE
,
MINIMAL TRIANGULATIONS
,
SURFACES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Borghini, Eugenio; Minian, Elias Gabriel; The covering type of closed surfaces and minimal triangulations; Academic Press Inc Elsevier Science; Journal of Combinatorial Theory Series A; 166; 8-2019; 1-10
Compartir
Altmétricas