Artículo
A second-order convergence augmented Lagrangian method using non-quadratic penalty functions
Fecha de publicación:
06/2019
Editorial:
Springer
Revista:
Opsearch
ISSN:
0030-3887
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The purpose of the present paper is to study the global convergence of a practical Augmented Lagrangian model algorithm that considers non-quadratic Penalty–Lagrangian functions. We analyze the convergence of the model algorithm to points that satisfy the Karush–Kuhn–Tucker conditions and also the weak second-order necessary optimality condition. The generation scheme of the Penalty–Lagrangian functions includes the exponential penalty function and the logarithmic-barrier without using convex information.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Sanchez, María Daniela; Schuverdt, María Laura; A second-order convergence augmented Lagrangian method using non-quadratic penalty functions; Springer; Opsearch; 56; 2; 6-2019; 390-408
Compartir
Altmétricas