Mostrar el registro sencillo del ítem

dc.contributor.author
Carando, Daniel Germán  
dc.contributor.author
Dimant, Veronica Isabel  
dc.contributor.author
Muro, Luis Santiago Miguel  
dc.date.available
2020-11-06T20:47:53Z  
dc.date.issued
2007-12  
dc.identifier.citation
Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Hypercyclic convolution operators on Fréchet spaces of analytic functions; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 336; 2; 12-2007; 1324-1340  
dc.identifier.issn
0022-247X  
dc.identifier.uri
http://hdl.handle.net/11336/117849  
dc.description.abstract
A result of Godefroy and Shapiro states that the convolution operators on the space of entire functions on Cn, which are not multiples of identity, are hypercyclic. Analogues of this result have appeared for some spaces of holomorphic functions on a Banach space. In this work, we define the space holomorphic functions associated to a sequence of spaces of polynomials and determine conditions on this sequence that assure hypercyclicity of convolution operators. Some known results come out as particular cases of this setting. We also consider holomorphic functions associated to minimal ideals of polynomials and to polynomials of the Schatten-von Neumann class.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CONVOLUTION OPERATORS  
dc.subject
HYPERCYCLIC OPERATORS  
dc.subject
SPACES OF HOLOMORPHIC FUNCTIONS  
dc.subject.classification
Otras Matemáticas  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Hypercyclic convolution operators on Fréchet spaces of analytic functions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-09-24T14:25:33Z  
dc.journal.volume
336  
dc.journal.number
2  
dc.journal.pagination
1324-1340  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina  
dc.description.fil
Fil: Dimant, Veronica Isabel. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina  
dc.journal.title
Journal of Mathematical Analysis and Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X07003514  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jmaa.2007.03.055