Artículo
Fast action detection via discriminative random forest voting and top-K subvolume search
Fecha de publicación:
06/2011
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
Ieee Transactions On Multimedia
ISSN:
1520-9210
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Multiclass action detection in complex scenes is a challenging problem because of cluttered backgrounds and the large intra-class variations in each type of actions. To achieve efficient and robust action detection, we characterize a video as a collection of spatio-temporal interest points, and locate actions via finding spatio-temporal video subvolumes of the highest mutual information score towards each action class. A random forest is constructed to efficiently generate discriminative votes from individual interest points, and a fast top-K subvolume search algorithm is developed to find all action instances in a single round of search. Without significantly degrading the performance, such a top-K search can be performed on down-sampled score volumes for more efficient localization. Experiments on a challenging MSR Action Dataset II validate the effectiveness of our proposed multiclass action detection method. The detection speed is several orders of magnitude faster than existing methods.
Palabras clave:
ACTION DETECTION
,
BRANCH AND BOUND
,
RANDOM FOREST
,
TOP-K SEARCH
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Yu, Gang; Goussies, Norberto Adrián; Yuan, Junsong; Liu, Zicheng; Fast action detection via discriminative random forest voting and top-K subvolume search; Institute of Electrical and Electronics Engineers; Ieee Transactions On Multimedia; 13; 3; 6-2011; 507-517
Compartir
Altmétricas