Mostrar el registro sencillo del ítem

dc.contributor.author
Da Silva, Joao Vitor  
dc.contributor.author
Rossi, Julio Daniel  
dc.contributor.author
Salort, Ariel Martin  
dc.date.available
2020-11-06T15:48:07Z  
dc.date.issued
2019-02  
dc.identifier.citation
Da Silva, Joao Vitor; Rossi, Julio Daniel; Salort, Ariel Martin; Regularity properties for p-dead core problems and their asymptotic limit as p to infinity; Oxford University Press; Journal of the London Mathematical Society; 99; 1; 2-2019; 69-96  
dc.identifier.issn
0024-6107  
dc.identifier.uri
http://hdl.handle.net/11336/117802  
dc.description.abstract
We study regularity issues and the limiting behavior as (Formula presented.) of non-negative solutions for elliptic equations of (Formula presented.) Laplacian type ((Formula presented.)) with a strong absorption: (Formula presented.) where (Formula presented.) is a bounded function, (Formula presented.) is a bounded domain and (Formula presented.). When (Formula presented.) is fixed, such a model is mathematically interesting since it permits the formation of dead core zones, that is, a priori unknown regions where non-negative solutions vanish identically. First, we turn our attention to establishing sharp quantitative regularity properties for (Formula presented.) dead core solutions. Afterwards, assuming that (Formula presented.) exists, we establish existence for limit solutions as (Formula presented.), as well as we characterize the corresponding limit operator governing the limit problem. We also establish sharp (Formula presented.) regularity estimates for limit solutions along free boundary points, that is, points on (Formula presented.) where the sharp regularity exponent is given explicitly by (Formula presented.). Finally, some weak geometric and measure theoretical properties as non-degeneracy, uniform positive density, porosity and convergence of the free boundaries are proved.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DEAD CORE PROBLEMS  
dc.subject
ASYMPTOTIC ANALYSIS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Regularity properties for p-dead core problems and their asymptotic limit as p to infinity  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-09-03T16:54:46Z  
dc.journal.volume
99  
dc.journal.number
1  
dc.journal.pagination
69-96  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Da Silva, Joao Vitor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.journal.title
Journal of the London Mathematical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://doi.wiley.com/10.1112/jlms.12161  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1112/jlms.12161