Artículo
Data-aided CFO estimators based on the averaged cyclic autocorrelation
González, Gustavo José
; Gregorio, Fernando Hugo
; Cousseau, Juan Edmundo
; Werner, Stefan; Wichman, Risto
Fecha de publicación:
01/2013
Editorial:
Elsevier Science
Revista:
Signal Processing
ISSN:
0165-1684
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Wireless communication systems typically employ a repetitive preamble in each slot which is used for parameter acquisition. The repetitive preamble is useful for estimating the carrier frequency offset (CFO), usually based on the autocorrelation of the received signal. In this paper, we derive a family of novel data-aided CFO estimators. The proposed estimators are based on a new autocorrelation function which is defined using cyclostationary properties of the repetitive preamble. In contrast to previous approaches, the new estimators make use of high-order noise terms leading to an improved performance. We present a detailed analysis of the proposed estimators and provide closed-form expressions for the variance of the estimators. The new estimators are shown to outperform the existing estimators obtaining a moderate improvement at high signal to noise ratio (SNR) and a considerable improvement at low SNR, by means of a reasonable increase in computational complexity.
Palabras clave:
Cfo Estimators
,
Cyclostationarity
,
Data-Aided
,
Ofdm
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIIE)
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Citación
González, Gustavo José; Gregorio, Fernando Hugo; Cousseau, Juan Edmundo; Werner, Stefan; Wichman, Risto; Data-aided CFO estimators based on the averaged cyclic autocorrelation; Elsevier Science; Signal Processing; 93; 1; 1-2013; 217-229
Compartir