Artículo
F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system
Fecha de publicación:
03/2019
Editorial:
Cornell University
Revista:
arXiv
e-ISSN:
2331-8422
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study a particle system with the following diffusion-branching-selection mechanism. Particles perform independent one dimensional Brownian motions and on top of that, at a constant rate, a pair of particles is chosen uniformly at random and both particles adopt the position of the rightmost one among them. We show that the cumulative distribution function of the empirical measure converges to a solution of the Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation and use this fact to prove that the system selects the minimal macroscopic speed as the number of particles goes to infinity.
Palabras clave:
BRANCHING-SELECTION
,
PARTICLE SYSTEMS
,
VELOCITY
,
F-KPP EQUATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Martínez, Julián; F-KPP Scaling limit and selection principle for a Brunet-Derrida type particle system; Cornell University; arXiv; 3-2019; 1-17
Compartir