Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

SCDVP: A Simplicial CNN Digital Visual Processor

Di Federico, MartinIcon ; Julian, Pedro MarceloIcon ; Mandolesi, Pablo Sergio
Fecha de publicación: 07/2014
Editorial: Institute Of Electrical And Electronics Engineers
Revista: Ieee Transactions On Circuits And Systems I-regular Papers
ISSN: 1549-8328
e-ISSN: 1558-0806
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Eléctrica y Electrónica

Resumen

In this work we present a programmable and reconfigurable single instruction multiple data (SIMD) visual processor based on the S-CNN architecture, namely, the Simplicial CNN Digital Visual Processor (SCDVP), oriented to high-performance low-level image processing. The cells in the array have a selectable neighborhood configuration and several registers, which provide the chip with extended spatial and temporal processing capabilities, in particular optical flow. A prototype 64 × 64 cell chip with two program memories and a column adder was fabricated in a 90 nm technology, which running at 133 MHz delivers 105.5 GOPS. The calculation at the cell level is performed with time coded signals and the program memory is located outside the array. This produces a very efficient realization in terms of area: 53.8 GOPS per mm2, which outperforms all results reported so far. We show that even after normalization, to account for technology scaling, the proposed architecture is the most efficient among all reported digital processors. Computation performance to power ratio also exceeds all previous results with 817.8 GOPS/W. Experimental results of the working chip are reported.
Palabras clave: Cellular Neural Networks , Simplicial Computation , Image Processing , Pixel Level Processing , Vision Chip , Asic , Piecewise Linear
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.949Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/11760
URL: http://ieeexplore.ieee.org/document/6716069/
URL: https://doi.org/10.1109/TCSI.2013.2295959
Colecciones
Articulos(IIIE)
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Citación
Di Federico, Martin; Julian, Pedro Marcelo; Mandolesi, Pablo Sergio; SCDVP: A Simplicial CNN Digital Visual Processor; Institute Of Electrical And Electronics Engineers; Ieee Transactions On Circuits And Systems I-regular Papers; 61; 7; 7-2014; 1962-1969
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES