Mostrar el registro sencillo del ítem

dc.contributor.author
Shan, Mao  
dc.contributor.author
Worrall, Stewart  
dc.contributor.author
Masson, Favio Roman  
dc.contributor.author
Nebot, Eduardo  
dc.date.available
2017-01-23T21:22:04Z  
dc.date.issued
2014-06  
dc.identifier.citation
Shan, Mao ; Worrall, Stewart ; Masson, Favio Roman; Nebot, Eduardo ; Using Delayed Observations for Long-Term Vehicle Tracking in Large Environments; Institute of Electrical and Electronics Engineers; Ieee Transactions On Intelligent Transportation Systems; 15; 3; 6-2014; 967-981  
dc.identifier.issn
1524-9050  
dc.identifier.issn
1558-0016  
dc.identifier.uri
http://hdl.handle.net/11336/11751  
dc.description.abstract
The tracking of vehicles over large areas with limited position observations is of significant importance in many industrial applications. This paper presents algorithms for long-term vehicle motion estimation based on a vehicle motion model that incorporates the properties of the working environment, and information collected by other mobile agents and fixed infrastructure collection points. The prediction algorithm provides long-term estimates of vehicle positions using speed and timing profiles built for a particular environment, and considering the probability of a vehicle stopping. A limited number of data collection points distributed around the field are used to update the estimates, with negative information (no communication) also used to improve the prediction. The paper introduces the concept of observation harvesting, a process in which peer-to-peer communication between vehicles allows egocentric position updates to be relayed among vehicles, and finally conveyed to the collection point for an improved position estimate. Positive and negative communication information is incorporated into the fusion stage, and a particle filter is used to incorporate the delayed observations harvested from vehicles in the field to improve the position estimates. The contributions of this work enable the optimization of fleet scheduling using discrete observations. Experimental results from a typical large scale mining operation are presented to validate the algorithms.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Delayed Observations  
dc.subject
Intervehicle Communication  
dc.subject
Long-Term Motion Prediction  
dc.subject
Particle Filtering  
dc.subject
Vehicle Tracking  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Using Delayed Observations for Long-Term Vehicle Tracking in Large Environments  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-01-19T19:54:24Z  
dc.journal.volume
15  
dc.journal.number
3  
dc.journal.pagination
967-981  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Shan, Mao . University Of Sidney; Australia  
dc.description.fil
Fil: Worrall, Stewart . University Of Sidney; Australia  
dc.description.fil
Fil: Masson, Favio Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; Argentina  
dc.description.fil
Fil: Nebot, Eduardo . University Of Sidney; Australia  
dc.journal.title
Ieee Transactions On Intelligent Transportation Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://ieeexplore.ieee.org/document/6701131/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1109/TITS.2013.2292934