Mostrar el registro sencillo del ítem

dc.contributor.author
Sabando, María Virginia  
dc.contributor.author
Ponzoni, Ignacio  
dc.contributor.author
Soto, Axel Juan  
dc.date.available
2020-11-02T20:14:21Z  
dc.date.issued
2019-12  
dc.identifier.citation
Sabando, María Virginia; Ponzoni, Ignacio; Soto, Axel Juan; Neural-based approaches to overcome feature selection and applicability domain in drug-related property prediction; Elsevier Science; Applied Soft Computing; 85; 12-2019; 1-14; 105777  
dc.identifier.issn
1568-4946  
dc.identifier.uri
http://hdl.handle.net/11336/117436  
dc.description.abstract
In the fields of pharmaceutical research and biomedical sciences, QSAR modeling is an established approach during drug discovery for prediction of biological activity of drug candidates. Yet, QSAR modeling poses a series of open challenges. First, chemical compounds are represented on a high-dimensional space and thus feature selection is typically applied, although this task entails a challenging combinatorial problem with potential loss of information. Second, the definition of the applicability domain of a QSAR model is a desirable aspect to determine the reliability of predictions on unseen chemicals, which is often difficult to assess due to the extent of the chemical space. Finally, interpretability of these models is also a critical issue for drug designers. The purpose of this work is to thoroughly assess the application of neural-based methods and recent advances deep learning for QSAR modeling. We hypothesize that neural-based methods can overcome the need to perform a descriptor selection phase. We developed three QSAR models based on neural networks for prediction of relevant chemical and biomedical properties that, in the absence of any feature selection step, can outperform the state-of-the-art models for such properties. We also implemented an embedded applicability domain technique based on network output probabilities that proved to be effective; its application improved the predictive performance of the model. Finally, we proposed the use of a post hoc feature analysis technique based on an aggregation of network weights, which enabled effective detection of relevant features in the model.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
APPLICABILITY DOMAIN  
dc.subject
FEATURE SELECTION  
dc.subject
MODEL INTERPRETABILITY  
dc.subject
NEURAL NETWORKS  
dc.subject
QSAR MODELING  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Neural-based approaches to overcome feature selection and applicability domain in drug-related property prediction  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-26T19:33:17Z  
dc.journal.volume
85  
dc.journal.pagination
1-14; 105777  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Sabando, María Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.journal.title
Applied Soft Computing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1568494619305587  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.asoc.2019.105777