Mostrar el registro sencillo del ítem
dc.contributor.author
Sabando, María Virginia
dc.contributor.author
Ponzoni, Ignacio
dc.contributor.author
Soto, Axel Juan
dc.date.available
2020-11-02T20:14:21Z
dc.date.issued
2019-12
dc.identifier.citation
Sabando, María Virginia; Ponzoni, Ignacio; Soto, Axel Juan; Neural-based approaches to overcome feature selection and applicability domain in drug-related property prediction; Elsevier Science; Applied Soft Computing; 85; 12-2019; 1-14; 105777
dc.identifier.issn
1568-4946
dc.identifier.uri
http://hdl.handle.net/11336/117436
dc.description.abstract
In the fields of pharmaceutical research and biomedical sciences, QSAR modeling is an established approach during drug discovery for prediction of biological activity of drug candidates. Yet, QSAR modeling poses a series of open challenges. First, chemical compounds are represented on a high-dimensional space and thus feature selection is typically applied, although this task entails a challenging combinatorial problem with potential loss of information. Second, the definition of the applicability domain of a QSAR model is a desirable aspect to determine the reliability of predictions on unseen chemicals, which is often difficult to assess due to the extent of the chemical space. Finally, interpretability of these models is also a critical issue for drug designers. The purpose of this work is to thoroughly assess the application of neural-based methods and recent advances deep learning for QSAR modeling. We hypothesize that neural-based methods can overcome the need to perform a descriptor selection phase. We developed three QSAR models based on neural networks for prediction of relevant chemical and biomedical properties that, in the absence of any feature selection step, can outperform the state-of-the-art models for such properties. We also implemented an embedded applicability domain technique based on network output probabilities that proved to be effective; its application improved the predictive performance of the model. Finally, we proposed the use of a post hoc feature analysis technique based on an aggregation of network weights, which enabled effective detection of relevant features in the model.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
APPLICABILITY DOMAIN
dc.subject
FEATURE SELECTION
dc.subject
MODEL INTERPRETABILITY
dc.subject
NEURAL NETWORKS
dc.subject
QSAR MODELING
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Neural-based approaches to overcome feature selection and applicability domain in drug-related property prediction
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-02-26T19:33:17Z
dc.journal.volume
85
dc.journal.pagination
1-14; 105777
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Sabando, María Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.journal.title
Applied Soft Computing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1568494619305587
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.asoc.2019.105777
Archivos asociados