Artículo
Maximising goals achievement through abstract argumentation frameworks: An optimal approach
Cohen, Andrea
; Gottifredi, Sebastián
; Vallati, Mauro; García, Alejandro Javier
; Grigoris, Antoniou
Fecha de publicación:
06/03/2020
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Expert Systems with Applications
ISSN:
0957-4174
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Argumentation is a prominent AI research area, focused on approaches and techniques for performing common-sense reasoning, that is of paramount importance in a wide range of real-world applications, such as decision support and recommender systems. In this work we introduce an approach for updating an abstract Argumentation Framework (AF) so that achievement with respect to a given set of goals is maximised. The set of goals identifies arguments for which a specific acceptability status (a labelling) will be pursued, distinguishing between “in” and “out” goals. Given an AF, a set of goals and a set of available actions allowing to add or remove arguments and attacks from the AF, our approach will select the strategy (set of actions) that should be applied in order to obtain a new AF where the goals achievement is maximised. Moreover, the selected strategy will be optimal with respect to the number of actions to be applied. In the context of argumentation-based expert and intelligent systems, our approach will provide tools allowing the user to interact with the argumentative reasoning process carried out by the system, learning how the strategy she undertakes will affect the recommendations she receives. For that, we propose an encoding of the AF, the available actions and goals as weighted Boolean formulas, and rely on MaxSAT techniques for selecting the optimal strategy. We provide an experimental analysis of our approach, and formally show that the results we obtain correspond to the optimal strategy.
Palabras clave:
ABSTRACT ARGUMENTATION
,
ARGUMENTATION DYNAMICS
,
GOALS ACHIEVEMENT
,
MAXSAT
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Citación
Cohen, Andrea; Gottifredi, Sebastián; Vallati, Mauro; García, Alejandro Javier; Grigoris, Antoniou; Maximising goals achievement through abstract argumentation frameworks: An optimal approach; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 141; 6-3-2020; 1-12; 112930
Compartir
Altmétricas