Artículo
Factorization patterns on nonlinear families of univariate polynomials over a finite field
Fecha de publicación:
01/2019
Editorial:
Springer
Revista:
Journal Of Algebraic Combinatorics
ISSN:
0925-9899
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We estimate the number |Aλ| of elements on a nonlinear family A of monic polynomials of Fq [T ] of degree r having factorization pattern λ := 1λ1 2λ2 ...rλr . We show that |Aλ| = T (λ) qr−m + O(qr−m−1/2), where T (λ) is the proportion of elements of the symmetric group of r elements with cycle pattern λ and m is the codimension of A. We provide explicit upper bounds for the constants underlying the O-notation in terms of λ and A with “good” behavior. We also apply these results to analyze the average-case complexity of the classical factorization algorithm restricted to A, showing that it behaves as good as in the general case.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Matera, Guillermo; Pérez, Mariana Valeria; Privitelli, Melina Lorena; Factorization patterns on nonlinear families of univariate polynomials over a finite field; Springer; Journal Of Algebraic Combinatorics; 51; 1-2019; 103–153
Compartir
Altmétricas