Mostrar el registro sencillo del ítem

dc.contributor.author
Masini, Guillermo  
dc.contributor.author
Blanco, Anibal Manuel  
dc.contributor.author
Petracci, Noemi Cristina  
dc.contributor.author
Bandoni, Jose Alberto  
dc.contributor.other
Papageorgiou, Lazaros  
dc.contributor.other
Georgiadis, Michael  
dc.date.available
2020-10-29T14:52:28Z  
dc.date.issued
2007  
dc.identifier.citation
Masini, Guillermo; Blanco, Anibal Manuel; Petracci, Noemi Cristina; Bandoni, Jose Alberto; Supply Chain Tactical Optimization in the Fruit Industry; Wiley-VCH; 4; 2007; 121-172  
dc.identifier.isbn
978-3-527-31906-0  
dc.identifier.uri
http://hdl.handle.net/11336/117148  
dc.description.abstract
(Según la estructura del capítulo indicada por el editor, no se incluye abstract. A continuación se reproduce parte de la Introducción) In this chapter, a detailed and complete tactical planning model to aid in the negotiation instance of a typical large company that operates several nodes of the fruit industry supply chain is presented. The proposed linear programming model considers various interactions of the real network and the typical operative practices of the business. The model is devised to estimate the production profiles of different final products of the system (packed fruit, juice, and cider) as well as the resources profiles (fresh fruit, storage capacity, and transportation logistics) required to feasibly operate in order to maximize the total net profit of the company. Results are presented for a typical large company operating in the supply chain of the pip fruit industry of Argentina. A very realistic scenario for a negotiation instance of the company is developed and discussed. A complete set of data is provided to reproduce the entire case study formulated as a linear programming model with about 34,000 equations and 143,000 variables. Optimum profiles for the maximum provision of different products at a predetermined delivery schedule, along with an estimation of raw material and other resources requirements in order to reach that level of production, are determined by the model. These results constitute valuable information for company managers to negotiate contracts with clients and suppliers in the coming business cycle.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley-VCH  
dc.relation
En Process Systems Engineering https://doi.org/10.1002/9783527631278  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SUPPLY CHAIN  
dc.subject
OPTIMIZATION  
dc.subject
FRUIT INDUSTRY  
dc.subject
MATHEMATICAL PROGRAMMING MODEL  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Supply Chain Tactical Optimization in the Fruit Industry  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2020-08-04T19:14:18Z  
dc.journal.volume
4  
dc.journal.pagination
121-172  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Weinheim  
dc.description.fil
Fil: Masini, Guillermo. Universidad Nacional del Comahue; Argentina  
dc.description.fil
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Petracci, Noemi Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1002/9783527631278.ch5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527631278.ch5  
dc.conicet.paginas
600  
dc.journal.tomo
II  
dc.source.titulo
Supply Chain Optimization: