Artículo
Multiple Exclusion Statistics
Riccardo, Julián José
; Riccardo, Jose Luis
; Ramirez Pastor, Antonio Jose
; Pasinetti, Pedro Marcelo
Fecha de publicación:
07/2019
Editorial:
American Physical Society
Revista:
Physical Review Letters
ISSN:
0031-9007
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A new distribution for systems of particles in equilibrium obeying the exclusion of correlated states is presented following Haldane's state counting. It relies upon an ansatz to deal with the multiple exclusion that takes place when the states accessible to single particles are spatially correlated and it can be simultaneously excluded by more than one particle. Haldane's statistics and Wu's distribution are recovered in the limit of noncorrelated states of the multiple exclusion statistics. In addition, an exclusion spectrum function G(n) is introduced to account for the dependence of the state exclusion on the occupation number n. The results of thermodynamics and state occupation are shown for ideal lattice gases of linear particles of size k (k-mers) where the multiple exclusion occurs. Remarkable agreement is found with grand-canonical Monte Carlo simulations from k=2 to 10 where the multiple exclusion dominates as k increases.
Palabras clave:
Statistical Mechanics
,
Lattice Models
,
Monte Carlo Simulations
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INFAP)
Articulos de INST. DE FISICA APLICADA "DR. JORGE ANDRES ZGRABLICH"
Articulos de INST. DE FISICA APLICADA "DR. JORGE ANDRES ZGRABLICH"
Citación
Riccardo, Julián José; Riccardo, Jose Luis; Ramirez Pastor, Antonio Jose; Pasinetti, Pedro Marcelo; Multiple Exclusion Statistics; American Physical Society; Physical Review Letters; 123; 2; 7-2019; 1-5
Compartir
Altmétricas