Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Random sequential adsorption on Euclidean, fractal, and random lattices

Pasinetti, Pedro MarceloIcon ; Ramírez, Lucía SoledadIcon ; Centres, Paulo MarceloIcon ; Ramirez Pastor, Antonio JoseIcon ; Cwilich, Gabriel
Fecha de publicación: 11/2019
Editorial: American Physical Society
Revista: Physical Review E
ISSN: 2470-0053
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

Irreversible adsorption of objects of different shapes and sizes on Euclidean, fractal, and random lattices is studied. The adsorption process is modeled by using random sequential adsorption algorithm. Objects are adsorbed on one-, two-, and three-dimensional Euclidean lattices, on Sierpinski carpets having dimension d between 1 and 2, and on Erdos-Rényi random graphs. The number of sites is M=Ld for Euclidean and fractal lattices, where L is a characteristic length of the system. In the case of random graphs, such a characteristic length does not exist, and the substrate can be characterized by a fixed set of M vertices (sites) and an average connectivity (or degree) g. This paper concentrates on measuring (i) the probability WL(M)(θ) that a lattice composed of Ld(M) elements reaches a coverage θ and (ii) the exponent νj characterizing the so-called jamming transition. The results obtained for Euclidean, fractal, and random lattices indicate that the quantities derived from the jamming probability WL(M)(θ), such as (dWL/dθ)max and the inverse of the standard deviation ΔL, behave asymptotically as M1/2. In the case of Euclidean and fractal lattices, where L and d can be defined, the asymptotic behavior can be written as M1/2=Ld/2=L1/νj, with νj=2/d.
Palabras clave: RANDOM SECUENTIAL ASDORPTION , JAMMING , NETWORKS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 906.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/117073
URL: https://link.aps.org/doi/10.1103/PhysRevE.100.052114
DOI: http://dx.doi.org/10.1103/PhysRevE.100.052114
URL: https://arxiv.org/abs/1907.02572
Colecciones
Articulos(INFAP)
Articulos de INST. DE FISICA APLICADA "DR. JORGE ANDRES ZGRABLICH"
Citación
Pasinetti, Pedro Marcelo; Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Cwilich, Gabriel; Random sequential adsorption on Euclidean, fractal, and random lattices; American Physical Society; Physical Review E; 100; 5; 11-2019; 1-8
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES