Mostrar el registro sencillo del ítem
dc.contributor.author
Barrera Diaz, Deicy Amparo
dc.contributor.author
Florent, Marc
dc.contributor.author
Sapag, Manuel Karim
dc.contributor.author
Bandosz, Teresa J.
dc.date.available
2020-10-27T22:37:12Z
dc.date.issued
2019-10
dc.identifier.citation
Barrera Diaz, Deicy Amparo; Florent, Marc; Sapag, Manuel Karim; Bandosz, Teresa J.; Insight into the Mechanism of Oxygen Reduction Reaction on Micro/Mesoporous Carbons: Ultramicropores versus Nitrogen-Containing Catalytic Centers in Ordered Pore Structure; American Chemical Society; ACS Applied Energy Materials; 2; 10; 10-2019; 7412-7424
dc.identifier.issn
2574-0962
dc.identifier.uri
http://hdl.handle.net/11336/116999
dc.description.abstract
Ordered mesoporous/microporous carbon was synthesized from sucrose. The carbon was oxidized and modified with urea at 600, 800, and 950 °C. The obtained carbons differed in the pore size distributions in the meso- and micropore ranges. The carbons, after an extensive surface characterization, were used as ORR catalysts in a KOH electrolyte. Kinetic current densities and n reached 12.5 mA cm-2 and 3.94, respectively. The results suggested that small micropores increased the efficiency of ORR. The density of surface oxygen in mesopores had also a positive effect on ORR by increasing the hydrophilicity and the electrochemically active surface area (ECSA) and, thus, the accessibility of oxygen dissolved in the electrolyte to the pores of the highest adsorption potential. From the viewpoint of the number of electron transfers, current density, and onset potential, the carbons with small pore sizes and with only traces of nitrogen performed equally, or even better, in ORR process as those containing the catalytic nitrogen sites.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ELECTROCATALYSIS
dc.subject
N-DOPED CARBONS
dc.subject
ORDERED NANOPOROUS CARBONS
dc.subject
OXYGEN REDUCTION REACTION
dc.subject
SURFACE CHEMISTRY
dc.subject
ULTRAMICROPORE SIZES
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Insight into the Mechanism of Oxygen Reduction Reaction on Micro/Mesoporous Carbons: Ultramicropores versus Nitrogen-Containing Catalytic Centers in Ordered Pore Structure
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-07-22T15:40:56Z
dc.journal.volume
2
dc.journal.number
10
dc.journal.pagination
7412-7424
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington DC
dc.description.fil
Fil: Barrera Diaz, Deicy Amparo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina. The City College of New York; Estados Unidos
dc.description.fil
Fil: Florent, Marc. The City College of New York; Estados Unidos
dc.description.fil
Fil: Sapag, Manuel Karim. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
dc.description.fil
Fil: Bandosz, Teresa J.. The City College of New York; Estados Unidos
dc.journal.title
ACS Applied Energy Materials
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acsaem.9b01427
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acsaem.9b01427
Archivos asociados