Artículo
The Minimal Volume of Simplices Containing a Convex Body
Fecha de publicación:
01/2019
Editorial:
Springer
Revista:
The Journal Of Geometric Analysis
ISSN:
1050-6926
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let K⊂ Rn be a convex body with barycenter at the origin. We show there is a simplex S⊂ K having also barycenter at the origin such that (vol(S)vol(K))1/n≥cn, where c> 0 is an absolute constant. This is achieved using stochastic geometric techniques. Precisely, if K is in isotropic position, we present a method to find centered simplices verifying the above bound that works with extremely high probability. By duality, given a convex body K⊂ Rn we show there is a simplex S enclosing Kwith the same barycenter such that(vol(S)vol(K))1/n≤dn,for some absolute constant d> 0. Up to the constant, the estimate cannot be lessened.
Palabras clave:
CONVEX BODIES
,
ISOTROPIC POSITION
,
RANDOM SIMPLICES
,
SIMPLICES
,
VOLUME RATIO
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Galicer, Daniel Eric; Merzbacher, Diego Mariano; Pinasco, Damian; The Minimal Volume of Simplices Containing a Convex Body; Springer; The Journal Of Geometric Analysis; 29; 1; 1-2019; 717-732
Compartir
Altmétricas