Artículo
Energy dependent potential problems for the one dimensional p-Laplacian operator
Fecha de publicación:
02/2019
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Nonlinear Analysis-real World Applications
ISSN:
1468-1218
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work we analyze a nonlinear eigenvalue problem for the p-Laplacian operator with zero Dirichlet boundary conditions. We assume that the problem has a potential which depends on the eigenvalue parameter, and we show that, for n big enough, there exists a real eigenvalue λn, and their corresponding eigenfunctions have exactly n nodal domains. We characterize the asymptotic behavior of these eigenvalues, obtaining two terms in the asymptotic expansion of λn in powers of n. Finally, we study the inverse nodal problem in the case of energy dependent potentials, showing that some subset of the zeros of the corresponding eigenfunctions is enough to determine the main term of the potential.
Palabras clave:
ASYMPTOTIC BEHAVIOR
,
EIGENVALUES
,
NODAL INVERSE PROBLEM
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Koyunbakan, Hikmet; Pinasco, Juan Pablo; Scarola, Cristian; Energy dependent potential problems for the one dimensional p-Laplacian operator; Pergamon-Elsevier Science Ltd; Nonlinear Analysis-real World Applications; 45; 2-2019; 285-298
Compartir
Altmétricas