Artículo
Sharp regularity estimates for quasi-linear elliptic dead core problems and applications
Fecha de publicación:
06/2018
Editorial:
Springer
Revista:
Calculus Of Variations And Partial Differential Equations
ISSN:
0944-2669
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this manuscript we study geometric regularity estimates for quasi-linear elliptic equations of p-Laplace type (1 < p< ∞) with strong absorption condition: (Formula presented.). R+× RN→ RNis a vector field with an appropriate p-structure, λ0is a non-negative and bounded function and 0 ≤ q< p- 1. Such a model permits existence of solutions with dead core zones, i.e, a priori unknown regions where non-negative solutions vanish identically. We establish sharp and improved Cγregularity estimates along free boundary points, namely F0(u, Ω) = ∂{ u> 0 } ∩ Ω , where the regularity exponent is given explicitly by γ=pp-1-q≫1. Some weak geometric and measure theoretical properties as non-degeneracy, uniform positive density and porosity of free boundary are proved. As an application, a Liouville-type result for entire solutions is established provided that their growth at infinity can be controlled in an appropriate manner. Finally, we obtain finiteness of (N- 1) -Hausdorff measure of free boundary for a particular class of dead core problems. The approach employed in this article is novel even to dead core problems governed by the p-Laplace operator - Δ pu+ λ0uqχ{ u > 0 }= 0 for any λ0> 0.
Palabras clave:
dead core problems
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
da Silva, João Vítor; Salort, Ariel Martin; Sharp regularity estimates for quasi-linear elliptic dead core problems and applications; Springer; Calculus Of Variations And Partial Differential Equations; 57; 83; 6-2018; 1-24
Compartir
Altmétricas