Artículo
Finite element approximations of the nonhomogeneous fractional Dirichlet problem
Fecha de publicación:
05/2018
Editorial:
Oxford University Press
Revista:
Ima Journal Of Numerical Analysis
ISSN:
0272-4979
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study finite element approximations of the nonhomogeneous Dirichlet problem for the fractional Laplacian. Our approach is based on weak imposition of the Dirichlet condition and incorporating a nonlocal analogue of the normal derivative as a Lagrange multiplier in the formulation of the problem. In order to obtain convergence orders for our scheme, regularity estimates are developed both for the solution and for its nonlocal derivative. The method we propose requires that, as meshes are refined, the discrete problems be solved in a family of domains of growing diameter.
Palabras clave:
FRACTIONAL LAPLACIAN
,
FINITE ELEMENTS
,
A PRIORI ERROR ESTIMATES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Acosta Rodriguez, Gabriel; Borthagaray Peradotto, Juan Pablo; Heuer, Norbert; Finite element approximations of the nonhomogeneous fractional Dirichlet problem; Oxford University Press; Ima Journal Of Numerical Analysis; 39; 3; 5-2018; 1471–1501
Compartir
Altmétricas