Mostrar el registro sencillo del ítem

dc.contributor.author
Koopal, Luuk  
dc.contributor.author
Tan, Wenfeng  
dc.contributor.author
Avena, Marcelo Javier  
dc.date.available
2020-10-26T14:50:51Z  
dc.date.issued
2019-09  
dc.identifier.citation
Koopal, Luuk; Tan, Wenfeng; Avena, Marcelo Javier; Mixed ad/desorption kinetics unraveled with the equilibrium adsorption isotherm; Elsevier Science; Colloids and Surfaces A: Physicochemical and Engineering Aspects; 577; 9-2019; 709-722  
dc.identifier.issn
0927-7757  
dc.identifier.uri
http://hdl.handle.net/11336/116805  
dc.description.abstract
Predicting ad/desorption rates at solid/solution interfaces is important for environmental and industrial processes. For non-porous surfaces the adsorption process can be divided in film diffusion and surface reactions. Classical models consider situations where one of these processes is rate limiting, but by considering a steady state situation of film diffusion and surface reactions a simple mixed kinetic model for ad/desorption of solutes or nano particles is obtained. With this model, the driving force for ad/desorption can be predicted when the equilibrium isotherm is known. The model can be combined either with experimentally meausured isotherms or with a large variety of equilibrium adsorption isotherm equations for mono- and (pseudo) multicomponent adsorption of charged and uncharged solutes on homogeneous and heterogeneous surfaces. The kinetic model is illustrated by using the Langmuir equation, and the relation between the adsorption affinity and the driving force for ad/desorption is discussed for controlled-flow and stirred batch experiments. With high-affinity isotherms adsorption is relatively fast and desorption is very slow. In batch systems the ad/desorption rates are smaller than in flow systems because the bulk solute concentration decreases with adsorption and increases with desorption. Experimental results for both flow and batch systems are used for a semi-quantitative comparison of the observed kinetics with model predictions based on the driving force for ad/desorption.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ADSORPTION DESORPTION RATE  
dc.subject
ENVIRONMENTAL FATE  
dc.subject
MIXED KINETIC MODEL  
dc.subject.classification
Química Coloidal  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Mixed ad/desorption kinetics unraveled with the equilibrium adsorption isotherm  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-10-22T18:25:00Z  
dc.journal.volume
577  
dc.journal.pagination
709-722  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Koopal, Luuk. University of Agriculture Wageningen; Países Bajos  
dc.description.fil
Fil: Tan, Wenfeng. Huazhong Agricultural University; República de China  
dc.description.fil
Fil: Avena, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.journal.title
Colloids and Surfaces A: Physicochemical and Engineering Aspects  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0927775719305539  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.colsurfa.2019.06.033