Mostrar el registro sencillo del ítem

dc.contributor.author
Bertolino, Graciela Mabel  
dc.contributor.author
Ruda, Margarita María  
dc.contributor.author
Farkas, Diana  
dc.date.available
2020-10-22T19:11:58Z  
dc.date.issued
2019-05  
dc.identifier.citation
Bertolino, Graciela Mabel; Ruda, Margarita María; Farkas, Diana; Fracture resistance of textured polycrystalline Zr: A simulation study; Elsevier; Computational Materials Science; 162; 5-2019; 304-313  
dc.identifier.issn
0927-0256  
dc.identifier.uri
http://hdl.handle.net/11336/116365  
dc.description.abstract
We report the results of large-scale molecular dynamics atomistic simulations of crack propagation in of α-Zirconium. The samples studied are polycrystalline columnar grains of 11–38 nm average diameter, and different textures. The focus is on deformation mechanisms in the crack tip region and the influence of texture, grain size and temperature on the fracture propagation. We found that the [1–100] texture is the most brittle with deformation at the crack tip occurring only through twinning with almost no dislocation activity. The more ductile textures are those where dislocation mechanisms are activated. For the basal orientation we observed dislocations while dislocations are dominant for the [11–20] texture. One important observation is that crack propagation can be hindered by the presence of the grain boundaries. As a result, samples with the smallest grain sizes are the more resistant to crack propagation. As expected, higher temperatures imply easier deformation, resulting in more ductile behavior for all orientations. At room temperature and higher, crack propagation occurs mostly intra granularly. However, at 77 K the [1–100] textured sample shows crack propagation through the nucleation of micro-voids ahead of the main crack.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FRACTURE  
dc.subject
MOLECULAR DYNAMICS SIMULATION  
dc.subject
NANO-CRYSTALLINE ZR  
dc.subject.classification
Otras Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Fracture resistance of textured polycrystalline Zr: A simulation study  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-10-07T13:58:16Z  
dc.journal.volume
162  
dc.journal.pagination
304-313  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Bertolino, Graciela Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Física de Metales; Argentina  
dc.description.fil
Fil: Ruda, Margarita María. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada CAB. Departamento Fisicoquímica de Materiales; Argentina  
dc.description.fil
Fil: Farkas, Diana. Virginia Polytechnic Institute; Estados Unidos  
dc.journal.title
Computational Materials Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.commatsci.2019.02.033  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0927025619301089