Mostrar el registro sencillo del ítem
dc.contributor.author
Bertolino, Graciela Mabel
dc.contributor.author
Ruda, Margarita María
dc.contributor.author
Farkas, Diana
dc.date.available
2020-10-22T19:11:58Z
dc.date.issued
2019-05
dc.identifier.citation
Bertolino, Graciela Mabel; Ruda, Margarita María; Farkas, Diana; Fracture resistance of textured polycrystalline Zr: A simulation study; Elsevier; Computational Materials Science; 162; 5-2019; 304-313
dc.identifier.issn
0927-0256
dc.identifier.uri
http://hdl.handle.net/11336/116365
dc.description.abstract
We report the results of large-scale molecular dynamics atomistic simulations of crack propagation in of α-Zirconium. The samples studied are polycrystalline columnar grains of 11–38 nm average diameter, and different textures. The focus is on deformation mechanisms in the crack tip region and the influence of texture, grain size and temperature on the fracture propagation. We found that the [1–100] texture is the most brittle with deformation at the crack tip occurring only through twinning with almost no dislocation activity. The more ductile textures are those where dislocation mechanisms are activated. For the basal orientation we observed dislocations while dislocations are dominant for the [11–20] texture. One important observation is that crack propagation can be hindered by the presence of the grain boundaries. As a result, samples with the smallest grain sizes are the more resistant to crack propagation. As expected, higher temperatures imply easier deformation, resulting in more ductile behavior for all orientations. At room temperature and higher, crack propagation occurs mostly intra granularly. However, at 77 K the [1–100] textured sample shows crack propagation through the nucleation of micro-voids ahead of the main crack.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FRACTURE
dc.subject
MOLECULAR DYNAMICS SIMULATION
dc.subject
NANO-CRYSTALLINE ZR
dc.subject.classification
Otras Ingeniería de los Materiales
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Fracture resistance of textured polycrystalline Zr: A simulation study
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-10-07T13:58:16Z
dc.journal.volume
162
dc.journal.pagination
304-313
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Bertolino, Graciela Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Física de Metales; Argentina
dc.description.fil
Fil: Ruda, Margarita María. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada CAB. Departamento Fisicoquímica de Materiales; Argentina
dc.description.fil
Fil: Farkas, Diana. Virginia Polytechnic Institute; Estados Unidos
dc.journal.title
Computational Materials Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.commatsci.2019.02.033
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0927025619301089
Archivos asociados