Artículo
Using chemometric tools to investigate the quality of three- and four-way liquid chromatographic data obtained with two different fluorescence detectors and applied to the determination of quinolone antibiotics in animal tissues
Fecha de publicación:
04/2020
Editorial:
Elsevier Science
Revista:
Chemometrics and Intelligent Laboratory Systems
ISSN:
0169-7439
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A comparison of two multi-way methodologies is presented regarding the simultaneous quantitation of several analytes in complex samples. Both protocols are based on liquid chromatography with fluorescence detection, in the following modes: (1) collecting second-order/three-way data by fluorescence emission detection at a fixed excitation wavelength, and (2) measuring third-order/four-way data through excitation-emission fluorescence matrix detection. Ten quinolone antibiotics were simultaneously analyzed in edible animal tissues such as chicken liver and bovine liver and kidney. Multivariate curve resolution - alternating least-squares (MCR-ALS) provided excellent results with the second-order strategy, with average relative prediction errors in the range 4?12% for real samples, at analyte concentrations which are compatible with the corresponding maximum residue levels. For third-order data, however, the overall MCR-ALS analytical results were worse than for second-order data (relative errors were in the range 9?23%), and one analyte was not resolved. As an alternative, unfolded partial least-squares with residual bi- and trilinearization (U-PLS/RBL and U-PLS/RTL) were applied to both second- and third-order data, with relative errors of 7?18% and 5?27% respectively. The latter errors were significantly larger than those for MCR-ALS/second-order data, although the U-PLS/RTL model permitted the detection of all analytes when processing the third-order data. Relative advantages and disadvantages of the applied procedures are discussed on the basis of the analytical performances and the specific details of the instrumental setups.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Articulos de INST.DE QUIMICA ROSARIO
Citación
Anzardi, Maria Betania; Arancibia, Juan Alberto; Olivieri, Alejandro Cesar; Using chemometric tools to investigate the quality of three- and four-way liquid chromatographic data obtained with two different fluorescence detectors and applied to the determination of quinolone antibiotics in animal tissues; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 199; 103972; 4-2020; 1-8
Compartir
Altmétricas