Mostrar el registro sencillo del ítem

dc.contributor.author
Kacoliris, Federico Pablo  
dc.contributor.author
Berkunsky, Igor  
dc.contributor.author
Williams, Jorge Daniel  
dc.date.available
2020-10-14T13:00:49Z  
dc.date.issued
2009-06  
dc.identifier.citation
Kacoliris, Federico Pablo; Berkunsky, Igor; Williams, Jorge Daniel; Methods for assesing population size in sand dune lizards (Liolaemus multimaculatus); Herpetologists League; Herpetologica; 65; 2; 6-2009; 219-226  
dc.identifier.issn
0018-0831  
dc.identifier.uri
http://hdl.handle.net/11336/115834  
dc.description.abstract
Basic information, such as population size and density, is needed for conservation and management of many species, especially threatened species. Thus, well-designed population monitoring programs that use appropriate methods for estimating parameters of interest, including density and survival, are needed as well. Mark-recapture and distance-sampling are established methods for estimating density in wildlife surveys. The sand dune lizard (Liolaemus multimaculatus) is an endemic and vulnerable species that inhabits dune habitats in Argentina. At present, however, there are no accurate estimates of density of this species and no established monitoring programs. The objectives of this study were (1) to test the use of markrecapture and distance-sampling methods and (2) to estimate density of this species in Mar Chiquita Reserve (37u 379 S–57u 169 W), an important area for the protection of this species. For distance-sampling surveys, we used a systematic line-transect design; for mark-recapture sampling, we performed exhaustive surveys and captured, marked, and recaptured lizards manually. Based on distance-sampling, populations were estimated at 3.6 and 5.4 individuals per ha in 2007 and 2008, respectively; corresponding estimates based on markrecapture data were 5.2 and 4.1 individuals per ha in 2007 and 2008, respectively. Detection probabilities were 0.23 in both 2007 and 2008 distance-sampling analyses and capture probabilities were 0.02 and 0.05 in 2007 and 2008 mark-recapture analyses. Based on these estimates, the Mar Chiquita Reserve contains a population of at least 10,000 individuals. Both methods were adequate for estimating populations of sand dune lizards, given the facility with which individuals can be detected and captured. The distance-sampling method requires less effort, but the mark-recapture method allows estimates of survival as well as density. Results of this work provide the baseline for developing a monitoring program for this lizard, and we suggest that the distance-sampling method be used to monitor all populations of sand dune lizard. used a systematic line-transect design; for mark-recapture sampling, we performed exhaustive surveys and captured, marked, and recaptured lizards manually. Based on distance-sampling, populations were estimated at 3.6 and 5.4 individuals per ha in 2007 and 2008, respectively; corresponding estimates based on markrecapture data were 5.2 and 4.1 individuals per ha in 2007 and 2008, respectively. Detection probabilities were 0.23 in both 2007 and 2008 distance-sampling analyses and capture probabilities were 0.02 and 0.05 in 2007 and 2008 mark-recapture analyses. Based on these estimates, the Mar Chiquita Reserve contains a population of at least 10,000 individuals. Both methods were adequate for estimating populations of sand dune lizards, given the facility with which individuals can be detected and captured. The distance-sampling method requires less effort, but the mark-recapture method allows estimates of survival as well as density. Results of this work provide the baseline for developing a monitoring program for this lizard, and we suggest that the distance-sampling method be used to monitor all populations of sand dune lizard. used a systematic line-transect design; for mark-recapture sampling, we performed exhaustive surveys and captured, marked, and recaptured lizards manually. Based on distance-sampling, populations were estimated at 3.6 and 5.4 individuals per ha in 2007 and 2008, respectively; corresponding estimates based on markrecapture data were 5.2 and 4.1 individuals per ha in 2007 and 2008, respectively. Detection probabilities were 0.23 in both 2007 and 2008 distance-sampling analyses and capture probabilities were 0.02 and 0.05 in 2007 and 2008 mark-recapture analyses. Based on these estimates, the Mar Chiquita Reserve contains a population of at least 10,000 individuals. Both methods were adequate for estimating populations of sand dune lizards, given the facility with which individuals can be detected and captured. The distance-sampling method requires less effort, but the mark-recapture method allows estimates of survival as well as density. Results of this work provide the baseline for developing a monitoring program for this lizard, and we suggest that the distance-sampling method be used to monitor all populations of sand dune lizard. inhabits dune habitats in Argentina. At present, however, there are no accurate estimates of density of this species and no established monitoring programs. The objectives of this study were (1) to test the use of markrecapture and distance-sampling methods and (2) to estimate density of this species in Mar Chiquita Reserve (37u 379 S–57u 169 W), an important area for the protection of this species. For distance-sampling surveys, we used a systematic line-transect design; for mark-recapture sampling, we performed exhaustive surveys and captured, marked, and recaptured lizards manually. Based on distance-sampling, populations were estimated at 3.6 and 5.4 individuals per ha in 2007 and 2008, respectively; corresponding estimates based on markrecapture data were 5.2 and 4.1 individuals per ha in 2007 and 2008, respectively. Detection probabilities were 0.23 in both 2007 and 2008 distance-sampling analyses and capture probabilities were 0.02 and 0.05 in 2007 and 2008 mark-recapture analyses. Based on these estimates, the Mar Chiquita Reserve contains a population of at least 10,000 individuals. Both methods were adequate for estimating populations of sand dune lizards, given the facility with which individuals can be detected and captured. The distance-sampling method requires less effort, but the mark-recapture method allows estimates of survival as well as density. Results of this work provide the baseline for developing a monitoring program for this lizard, and we suggest that the distance-sampling method be used to monitor all populations of sand dune lizard. used a systematic line-transect design; for mark-recapture sampling, we performed exhaustive surveys and captured, marked, and recaptured lizards manually. Based on distance-sampling, populations were estimated at 3.6 and 5.4 individuals per ha in 2007 and 2008, respectively; corresponding estimates based on markrecapture data were 5.2 and 4.1 individuals per ha in 2007 and 2008, respectively. Detection probabilities were 0.23 in both 2007 and 2008 distance-sampling analyses and capture probabilities were 0.02 and 0.05 in 2007 and 2008 mark-recapture analyses. Based on these estimates, the Mar Chiquita Reserve contains a population of at least 10,000 individuals. Both methods were adequate for estimating populations of sand dune lizards, given the facility with which individuals can be detected and captured. The distance-sampling method requires less effort, but the mark-recapture method allows estimates of survival as well as density. Results of this work provide the baseline for developing a monitoring program for this lizard, and we suggest that the distance-sampling method be used to monitor all populations of sand dune lizard. used a systematic line-transect design; for mark-recapture sampling, we performed exhaustive surveys and captured, marked, and recaptured lizards manually. Based on distance-sampling, populations were estimated at 3.6 and 5.4 individuals per ha in 2007 and 2008, respectively; corresponding estimates based on markrecapture data were 5.2 and 4.1 individuals per ha in 2007 and 2008, respectively. Detection probabilities were 0.23 in both 2007 and 2008 distance-sampling analyses and capture probabilities were 0.02 and 0.05 in 2007 and 2008 mark-recapture analyses. Based on these estimates, the Mar Chiquita Reserve contains a population of at least 10,000 individuals. Both methods were adequate for estimating populations of sand dune lizards, given the facility with which individuals can be detected and captured. The distance-sampling method requires less effort, but the mark-recapture method allows estimates of survival as well as density. Results of this work provide the baseline for developing a monitoring program for this lizard, and we suggest that the distance-sampling method be used to monitor all populations of sand dune lizard. inhabits dune habitats in Argentina. At present, however, there are no accurate estimates of density of this species and no established monitoring programs. The objectives of this study were (1) to test the use of markrecapture and distance-sampling methods and (2) to estimate density of this species in Mar Chiquita Reserve (37u 379 S–57u 169 W), an important area for the protection of this species. For distance-sampling surveys, we used a systematic line-transect design; for mark-recapture sampling, we performed exhaustive surveys and captured, marked, and recaptured lizards manually. Based on distance-sampling, populations were estimated at 3.6 and 5.4 individuals per ha in 2007 and 2008, respectively; corresponding estimates based on markrecapture data were 5.2 and 4.1 individuals per ha in 2007 and 2008, respectively. Detection probabilities were 0.23 in both 2007 and 2008 distance-sampling analyses and capture probabilities were 0.02 and 0.05 in 2007 and 2008 mark-recapture analyses. Based on these estimates, the Mar Chiquita Reserve contains a population of at least 10,000 individuals. Both methods were adequate for estimating populations of sand dune lizards, given the facility with which individuals can be detected and captured. The distance-sampling method requires less effort, but the mark-recapture method allows estimates of survival as well as density. Results of this work provide the baseline for developing a monitoring program for this lizard, and we suggest that the distance-sampling method be used to monitor all populations of sand dune lizard. used a systematic line-transect design; for mark-recapture sampling, we performed exhaustive surveys and captured, marked, and recaptured lizards manually. Based on distance-sampling, populations were estimated at 3.6 and 5.4 individuals per ha in 2007 and 2008, respectively; corresponding estimates based on markrecapture data were 5.2 and 4.1 individuals per ha in 2007 and 2008, respectively. Detection probabilities were 0.23 in both 2007 and 2008 distance-sampling analyses and capture probabilities were 0.02 and 0.05 in 2007 and 2008 mark-recapture analyses. Based on these estimates, the Mar Chiquita Reserve contains a population of at least 10,000 individuals. Both methods were adequate for estimating populations of sand dune lizards, given the facility with which individuals can be detected and captured. The distance-sampling method requires less effort, but the mark-recapture method allows estimates of survival as well as density. Results of this work provide the baseline for developing a monitoring program for this lizard, and we suggest that the distance-sampling method be used to monitor all populations of sand dune lizard. used a systematic line-transect design; for mark-recapture sampling, we performed exhaustive surveys and captured, marked, and recaptured lizards manually. Based on distance-sampling, populations were estimated at 3.6 and 5.4 individuals per ha in 2007 and 2008, respectively; corresponding estimates based on markrecapture data were 5.2 and 4.1 individuals per ha in 2007 and 2008, respectively. Detection probabilities were 0.23 in both 2007 and 2008 distance-sampling analyses and capture probabilities were 0.02 and 0.05 in 2007 and 2008 mark-recapture analyses. Based on these estimates, the Mar Chiquita Reserve contains a population of at least 10,000 individuals. Both methods were adequate for estimating populations of sand dune lizards, given the facility with which individuals can be detected and captured. The distance-sampling method requires less effort, but the mark-recapture method allows estimates of survival as well as density. Results of this work provide the baseline for developing a monitoring program for this lizard, and we suggest that the distance-sampling method be used to monitor all populations of sand dune lizard. Liolaemus multimaculatus) is an endemic and vulnerable species that inhabits dune habitats in Argentina. At present, however, there are no accurate estimates of density of this species and no established monitoring programs. The objectives of this study were (1) to test the use of markrecapture and distance-sampling methods and (2) to estimate density of this species in Mar Chiquita Reserve (37u 379 S–57u 169 W), an important area for the protection of this species. For distance-sampling surveys, we used a systematic line-transect design; for mark-recapture sampling, we performed exhaustive surveys and captured, marked, and recaptured lizards manually. Based on distance-sampling, populations were estimated at 3.6 and 5.4 individuals per ha in 2007 and 2008, respectively; corresponding estimates based on markrecapture data were 5.2 and 4.1 individuals per ha in 2007 and 2008, respectively. Detection probabilities were 0.23 in both 2007 and 2008 distance-sampling analyses and capture probabilities were 0.02 and 0.05 in 2007 and 2008 mark-recapture analyses. Based on these estimates, the Mar Chiquita Reserve contains a population of at least 10,000 individuals. Both methods were adequate for estimating populations of sand dune lizards, given the facility with which individuals can be detected and captured. The distance-sampling method requires less effort, but the mark-recapture method allows estimates of survival as well as density. Results of this work provide the baseline for developing a monitoring program for this lizard, and we suggest that the distance-sampling method be used to monitor all populations of sand dune lizard. used a systematic line-transect design; for mark-recapture sampling, we performed exhaustive surveys and captured, marked, and recaptured lizards manually. Based on distance-sampling, populations were estimated at 3.6 and 5.4 individuals per ha in 2007 and 2008, respectively; corresponding estimates based on markrecapture data were 5.2 and 4.1 individuals per ha in 2007 and 2008, respectively. Detection probabilities were 0.23 in both 2007 and 2008 distance-sampling analyses and capture probabilities were 0.02 and 0.05 in 2007 and 2008 mark-recapture analyses. Based on these estimates, the Mar Chiquita Reserve contains a population of at least 10,000 individuals. Both methods were adequate for estimating populations of sand dune lizards, given the facility with which individuals can be detected and captured. The distance-sampling method requires less effort, but the mark-recapture method allows estimates of survival as well as density. Results of this work provide the baseline for developing a monitoring program for this lizard, and we suggest that the distance-sampling method be used to monitor all populations of sand dune lizard. used a systematic line-transect design; for mark-recapture sampling, we performed exhaustive surveys and captured, marked, and recaptured lizards manually. Based on distance-sampling, populations were estimated at 3.6 and 5.4 individuals per ha in 2007 and 2008, respectively; corresponding estimates based on markrecapture data were 5.2 and 4.1 individuals per ha in 2007 and 2008, respectively. Detection probabilities were 0.23 in both 2007 and 2008 distance-sampling analyses and capture probabilities were 0.02 and 0.05 in 2007 and 2008 mark-recapture analyses. Based on these estimates, the Mar Chiquita Reserve contains a population of at least 10,000 individuals. Both methods were adequate for estimating populations of sand dune lizards, given the facility with which individuals can be detected and captured. The distance-sampling method requires less effort, but the mark-recapture method allows estimates of survival as well as density. Results of this work provide the baseline for developing a monitoring program for this lizard, and we suggest that the distance-sampling method be used to monitor all populations of sand dune lizard. u 379 S–57u 169 W), an important area for the protection of this species. For distance-sampling surveys, we used a systematic line-transect design; for mark-recapture sampling, we performed exhaustive surveys and captured, marked, and recaptured lizards manually. Based on distance-sampling, populations were estimated at 3.6 and 5.4 individuals per ha in 2007 and 2008, respectively; corresponding estimates based on markrecapture data were 5.2 and 4.1 individuals per ha in 2007 and 2008, respectively. Detection probabilities were 0.23 in both 2007 and 2008 distance-sampling analyses and capture probabilities were 0.02 and 0.05 in 2007 and 2008 mark-recapture analyses. Based on these estimates, the Mar Chiquita Reserve contains a population of at least 10,000 individuals. Both methods were adequate for estimating populations of sand dune lizards, given the facility with which individuals can be detected and captured. The distance-sampling method requires less effort, but the mark-recapture method allows estimates of survival as well as density. Results of this work provide the baseline for developing a monitoring program for this lizard, and we suggest that the distance-sampling method be used to monitor all populations of sand dune lizard.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Herpetologists League  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Liolaemus  
dc.subject
Distance sampling  
dc.subject
Conservation  
dc.subject
Density  
dc.subject
Monitoring  
dc.subject
Sand dune lizard  
dc.subject.classification
Zoología, Ornitología, Entomología, Etología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Methods for assesing population size in sand dune lizards (Liolaemus multimaculatus)  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-09-03T19:23:11Z  
dc.journal.volume
65  
dc.journal.number
2  
dc.journal.pagination
219-226  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Kacoliris, Federico Pablo. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Departamento Científico Zoología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.description.fil
Fil: Berkunsky, Igor. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable. Grupo de Ecología Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina  
dc.description.fil
Fil: Williams, Jorge Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Zoología de Vertebrados; Argentina  
dc.journal.title
Herpetologica