Mostrar el registro sencillo del ítem
dc.contributor.author
Romani, Facundo Alihuen
dc.contributor.author
Banic, Elizabeta
dc.contributor.author
Florent, Stevie N.
dc.contributor.author
Kanazawa, Takehiko
dc.contributor.author
Goodger, Jason Q. D.
dc.contributor.author
Mentink, Remco A.
dc.contributor.author
Dierschke, Tom
dc.contributor.author
Zachgo, Sabine
dc.contributor.author
Ueda, Takashi
dc.contributor.author
Bowman, John L.
dc.contributor.author
Tsiantis, Miltos
dc.contributor.author
Moreno, Javier Edgardo
dc.date.available
2020-10-14T12:16:49Z
dc.date.issued
2020-06
dc.identifier.citation
Romani, Facundo Alihuen; Banic, Elizabeta; Florent, Stevie N.; Kanazawa, Takehiko; Goodger, Jason Q. D.; et al.; Oil Body Formation in Marchantia polymorpha Is Controlled by MpC1HDZ and Serves as a Defense against Arthropod Herbivores; Cell Press; Current Biology; 30; 14; 6-2020; 2815-2828.e8
dc.identifier.issn
0960-9822
dc.identifier.uri
http://hdl.handle.net/11336/115829
dc.description.abstract
The origin of a terrestrial flora in the Ordovician required adaptation to novel biotic and abiotic stressors. Oil bodies, a synapomorphy of liverworts, accumulate secondary metabolites, but their function and development are poorly understood. Oil bodies of Marchantia polymorpha develop within specialized cells as one single large organelle. Here, we show that a class I homeodomain leucine-zipper (C1HDZ) transcription factor controls the differentiation of oil body cells in two different ecotypes of the liverwort M. polymorpha, a model genetic system for early divergent land plants. In flowering plants, these transcription factors primarily modulate responses to abiotic stress, including drought. However, loss-of-function alleles of the single ortholog gene, MpC1HDZ, in M. polymorpha did not exhibit phenotypes associated with abiotic stress. Rather, Mpc1hdz mutant plants were more susceptible to herbivory, and total plant extracts of the mutant exhibited reduced antibacterial activity. Transcriptomic analysis of the mutant revealed a reduction in expression of genes related to secondary metabolism that was accompanied by a specific depletion of oil body terpenoid compounds. Through time-lapse imaging, we observed that MpC1HDZ expression maxima precede oil body formation, indicating that MpC1HDZ mediates differentiation of oil body cells. Our results indicate that M. polymorpha oil bodies, and MpC1HDZ, are critical for defense against herbivory, but not for abiotic stress tolerance. Thus, C1HDZ genes were co-opted to regulate separate responses to biotic and abiotic stressors in two distinct land plant lineages.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Cell Press
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BIOTIC DEFENSE
dc.subject
CELL DIFFERENTIATION
dc.subject
EVOLUTION
dc.subject
HD-ZIP
dc.subject
LIVERWORT
dc.subject
MARCHANTIA
dc.subject
MPC1HDZ
dc.subject
OIL BODIES
dc.subject
OIL BODY CELL
dc.subject
SESQUITERPENES
dc.subject
TERPENE SYNTHASES
dc.subject
TRANSCRIPTION FACTOR
dc.subject.classification
Bioquímica y Biología Molecular
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Oil Body Formation in Marchantia polymorpha Is Controlled by MpC1HDZ and Serves as a Defense against Arthropod Herbivores
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-09-25T19:06:30Z
dc.journal.volume
30
dc.journal.number
14
dc.journal.pagination
2815-2828.e8
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Romani, Facundo Alihuen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina
dc.description.fil
Fil: Banic, Elizabeta. Max Planck Institute For Plant Breeding Research; Alemania
dc.description.fil
Fil: Florent, Stevie N.. Monash University. Faculty Of Science. School Of Biological Sciences; Australia
dc.description.fil
Fil: Kanazawa, Takehiko. National Institute For Basic Biology; Japón
dc.description.fil
Fil: Goodger, Jason Q. D.. School Of Sciences; Australia
dc.description.fil
Fil: Mentink, Remco A.. Max Planck Institute For Plant Breeding Research; Alemania
dc.description.fil
Fil: Dierschke, Tom. Monash University. Faculty Of Science. School Of Biological Sciences; Australia
dc.description.fil
Fil: Zachgo, Sabine. Onasbruck University; Alemania
dc.description.fil
Fil: Ueda, Takashi. National Institute For Basic Biology; Japón
dc.description.fil
Fil: Bowman, John L.. Monash University. Faculty Of Science. School Of Biological Sciences; Australia
dc.description.fil
Fil: Tsiantis, Miltos. Max Planck Institute For Plant Breeding Research; Alemania
dc.description.fil
Fil: Moreno, Javier Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina
dc.journal.title
Current Biology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0960982220307685
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cub.2020.05.081
Archivos asociados