Mostrar el registro sencillo del ítem

dc.contributor.author
Romani, Facundo Alihuen  
dc.contributor.author
Banic, Elizabeta  
dc.contributor.author
Florent, Stevie N.  
dc.contributor.author
Kanazawa, Takehiko  
dc.contributor.author
Goodger, Jason Q. D.  
dc.contributor.author
Mentink, Remco A.  
dc.contributor.author
Dierschke, Tom  
dc.contributor.author
Zachgo, Sabine  
dc.contributor.author
Ueda, Takashi  
dc.contributor.author
Bowman, John L.  
dc.contributor.author
Tsiantis, Miltos  
dc.contributor.author
Moreno, Javier Edgardo  
dc.date.available
2020-10-14T12:16:49Z  
dc.date.issued
2020-06  
dc.identifier.citation
Romani, Facundo Alihuen; Banic, Elizabeta; Florent, Stevie N.; Kanazawa, Takehiko; Goodger, Jason Q. D.; et al.; Oil Body Formation in Marchantia polymorpha Is Controlled by MpC1HDZ and Serves as a Defense against Arthropod Herbivores; Cell Press; Current Biology; 30; 14; 6-2020; 2815-2828.e8  
dc.identifier.issn
0960-9822  
dc.identifier.uri
http://hdl.handle.net/11336/115829  
dc.description.abstract
The origin of a terrestrial flora in the Ordovician required adaptation to novel biotic and abiotic stressors. Oil bodies, a synapomorphy of liverworts, accumulate secondary metabolites, but their function and development are poorly understood. Oil bodies of Marchantia polymorpha develop within specialized cells as one single large organelle. Here, we show that a class I homeodomain leucine-zipper (C1HDZ) transcription factor controls the differentiation of oil body cells in two different ecotypes of the liverwort M. polymorpha, a model genetic system for early divergent land plants. In flowering plants, these transcription factors primarily modulate responses to abiotic stress, including drought. However, loss-of-function alleles of the single ortholog gene, MpC1HDZ, in M. polymorpha did not exhibit phenotypes associated with abiotic stress. Rather, Mpc1hdz mutant plants were more susceptible to herbivory, and total plant extracts of the mutant exhibited reduced antibacterial activity. Transcriptomic analysis of the mutant revealed a reduction in expression of genes related to secondary metabolism that was accompanied by a specific depletion of oil body terpenoid compounds. Through time-lapse imaging, we observed that MpC1HDZ expression maxima precede oil body formation, indicating that MpC1HDZ mediates differentiation of oil body cells. Our results indicate that M. polymorpha oil bodies, and MpC1HDZ, are critical for defense against herbivory, but not for abiotic stress tolerance. Thus, C1HDZ genes were co-opted to regulate separate responses to biotic and abiotic stressors in two distinct land plant lineages.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cell Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIOTIC DEFENSE  
dc.subject
CELL DIFFERENTIATION  
dc.subject
EVOLUTION  
dc.subject
HD-ZIP  
dc.subject
LIVERWORT  
dc.subject
MARCHANTIA  
dc.subject
MPC1HDZ  
dc.subject
OIL BODIES  
dc.subject
OIL BODY CELL  
dc.subject
SESQUITERPENES  
dc.subject
TERPENE SYNTHASES  
dc.subject
TRANSCRIPTION FACTOR  
dc.subject.classification
Bioquímica y Biología Molecular  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Oil Body Formation in Marchantia polymorpha Is Controlled by MpC1HDZ and Serves as a Defense against Arthropod Herbivores  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-09-25T19:06:30Z  
dc.journal.volume
30  
dc.journal.number
14  
dc.journal.pagination
2815-2828.e8  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Romani, Facundo Alihuen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina  
dc.description.fil
Fil: Banic, Elizabeta. Max Planck Institute For Plant Breeding Research; Alemania  
dc.description.fil
Fil: Florent, Stevie N.. Monash University. Faculty Of Science. School Of Biological Sciences; Australia  
dc.description.fil
Fil: Kanazawa, Takehiko. National Institute For Basic Biology; Japón  
dc.description.fil
Fil: Goodger, Jason Q. D.. School Of Sciences; Australia  
dc.description.fil
Fil: Mentink, Remco A.. Max Planck Institute For Plant Breeding Research; Alemania  
dc.description.fil
Fil: Dierschke, Tom. Monash University. Faculty Of Science. School Of Biological Sciences; Australia  
dc.description.fil
Fil: Zachgo, Sabine. Onasbruck University; Alemania  
dc.description.fil
Fil: Ueda, Takashi. National Institute For Basic Biology; Japón  
dc.description.fil
Fil: Bowman, John L.. Monash University. Faculty Of Science. School Of Biological Sciences; Australia  
dc.description.fil
Fil: Tsiantis, Miltos. Max Planck Institute For Plant Breeding Research; Alemania  
dc.description.fil
Fil: Moreno, Javier Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina  
dc.journal.title
Current Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0960982220307685  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cub.2020.05.081