Artículo
Data stream treatment using sliding windows with MapReduce
Fecha de publicación:
11/2016
Editorial:
Universidad Nacional de La Plata. Facultad de Informática
Revista:
Journal of Computer Science and Technology
ISSN:
1666-6046
e-ISSN:
1666-6038
Idioma:
Español
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Knowledge Discovery in Databases (KDD) techniques present limitations when the volume of data to process is very large. Any KDD algorithm needs to do several iterations on the complete set of data in order to carry out its work. For continuous data stream processing it is necessary to store part of it in a temporal window.In this paper, we present a technique that uses the size of the temporal window in a dynamic way, based on the frequency of the data arrival and the response time of the KDD task. The obtained results show that this technique reaches a great size window where each example of the stream is used in more than one iteration of the KDD task.
Palabras clave:
BIG DATA
,
MAPREDUCE
,
STREAM PROCESSING
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Basgall, María José; Hasperué, Waldo; Naiouf, Ricardo Marcelo; Data stream treatment using sliding windows with MapReduce; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science and Technology; 16; 2; 11-2016; 76-83
Compartir