Mostrar el registro sencillo del ítem

dc.contributor.author
Cersósimo, Darío Sergio  
dc.contributor.author
Ravazzoli, Claudia Leonor  
dc.contributor.author
García Martinez, Ramón  
dc.date.available
2020-10-13T17:45:01Z  
dc.date.issued
2016-03  
dc.identifier.citation
Cersósimo, Darío Sergio; Ravazzoli, Claudia Leonor; García Martinez, Ramón; Prediction of lateral variations in reservoir properties throughout an interpreted seismic horizon using an artificial neural network; Society of Exploration Geophysicists; The Leading Edge; 35; 3; 3-2016; 265-269  
dc.identifier.issn
1070-485X  
dc.identifier.uri
http://hdl.handle.net/11336/115806  
dc.description.abstract
Successful use of an artificial neural network is shown to predict lateral variations of seismic velocity, density, thickness, and gamma rays associated with sand dune reservoirs identified on a previously interpreted seismic horizon. The work is presented in two main sections. Section one is a feasibility analysis based on synthetic data. A known geologic model is used, performed by pseudowells, in which lateral variations in seismic velocity, density, and gamma ray values are related to the dunes. The synthetic seismic model and the attributes derived are used as training input in the neural network. Section two is a real case example where the methodology is applied to a real seismic data set. Results indicate that using a set of data and attributes restricted to a time interval corresponding to a previously interpreted seismic horizon is more efficient than using a whole data cube, involving a very large volume of data.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Society of Exploration Geophysicists  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL NEURAL NETWORK  
dc.subject
ATTRIBUTES  
dc.subject
HORIZONS  
dc.subject
INTERPRETATION  
dc.subject
MODELING  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Prediction of lateral variations in reservoir properties throughout an interpreted seismic horizon using an artificial neural network  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-08-19T20:22:43Z  
dc.identifier.eissn
1938-3789  
dc.journal.volume
35  
dc.journal.number
3  
dc.journal.pagination
265-269  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Cersósimo, Darío Sergio. GALP Energía; Portugal  
dc.description.fil
Fil: Ravazzoli, Claudia Leonor. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.description.fil
Fil: García Martinez, Ramón. Universidad Nacional de Lanús; Argentina  
dc.journal.title
The Leading Edge  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1190/tle35030265.1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://library.seg.org/doi/abs/10.1190/tle35030265.1