Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Improving the efficiency of a Savonius wind turbine by designing a set of deflector plates with a metamodel-based optimization approach

Storti, Bruno AlbertoIcon ; Dorella, Jonathan JesusIcon ; Roman, Nadia DeniseIcon ; Peralta, IgnacioIcon ; Albanesi, Alejandro EduardoIcon
Fecha de publicación: 07/2019
Editorial: Pergamon-Elsevier Science Ltd
Revista: Energy
ISSN: 0360-5442
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Mecánica Aplicada

Resumen

Savonius wind turbines are the most suitable devices used in urban areas to produce electrical power. This is due to their simplicity, ease of maintenance, and acceptable power output with a low speed and highly variable wind profile. However, their efficiency is low, and the development of optimization tools is necessary to increase the total power output. This work presents a metamodel-based method to optimize the size and shape of a set of deflector plates to reduce the reverse moment of the turbine, using a genetic algorithm combined with an artificial neural network, reducing the computational cost. A parametrization of the deflectors geometry is proposed, and a Computational Fluid Dynamics model was implemented to train and validate the artificial neural network. The method was applied to design the deflectors of an actual 8-blade, 1[kW], 2.5[m] height turbine. Results showed an efficiency increment of 30%, from 0.215, to 0.279 in the turbine with the optimized deflectors. Furthermore, it is capable of producing power at 4[m/s], while the reference design had null power at that point. This methodology demanded 159 h, a substantial reduction of the computational cost of up to 97% in contrast to the classical simulation-based optimization approach.
Palabras clave: ARTIFICIAL NEURAL NETWORKS , COMPUTATIONAL FLUID DYNAMICS , DEFLECTORS PLATES , GENETIC ALGORITHM , OPTIMIZATION , SAVONIUS WIND TURBINE
Ver el registro completo
 
Archivos asociados
Tamaño: 4.570Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/115753
URL: https://linkinghub.elsevier.com/retrieve/pii/S0360544219314860
DOI: http://dx.doi.org/10.1016/j.energy.2019.07.144
Colecciones
Articulos(CIMEC)
Articulos de CENTRO DE INVESTIGACION DE METODOS COMPUTACIONALES
Citación
Storti, Bruno Alberto; Dorella, Jonathan Jesus; Roman, Nadia Denise; Peralta, Ignacio; Albanesi, Alejandro Eduardo; Improving the efficiency of a Savonius wind turbine by designing a set of deflector plates with a metamodel-based optimization approach; Pergamon-Elsevier Science Ltd; Energy; 186; 7-2019; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES