Mostrar el registro sencillo del ítem
dc.contributor.author
Gimenez, Juan Marcelo

dc.contributor.author
Bre, Facundo

dc.date.available
2020-10-13T12:29:27Z
dc.date.issued
2019-10
dc.identifier.citation
Gimenez, Juan Marcelo; Bre, Facundo; Optimization of RANS turbulence models using genetic algorithms to improve the prediction of wind pressure coefficients on low-rise buildings; Elsevier Science; Journal of Wind Engineering and Industrial Aerodynamics; 193; 10-2019; 103978 1-14
dc.identifier.issn
0167-6105
dc.identifier.uri
http://hdl.handle.net/11336/115752
dc.description.abstract
Being associated with natural ventilation, the pressure distribution on surfaces is relevant for energy consumption, thermal comfort, and air quality in buildings. The aim of this work is to present a simulation-based optimization methodology to recalibrate the closure coefficients of Reynolds-averaged Navier-Stokes (RANS) turbulence models in order to improve the prediction of wind surface-averaged pressure coefficients on a wide range of isolated low-rise buildings. To accomplish this, genetic algorithms and Computational Fluid Dynamics (CFD) simulations are dynamically coupled to find the closure coefficients set which minimize the CFD prediction error regarding wind-tunnel experimental data. The methodology is applied to two turbulence models, the renormalization group k-epsilon model (RNG) and the Spalart-Allmaras model (SA), considering as target cases buildings with different roof types (flat, gable and hip) and wind incidence angles. In order to show the strength of the novel optimal sets of closure coefficients obtained, an exhaustive validation is performed over other low-rise buildings (52 new cases) which were not calibrated against. Results validate using the optimal sets because the recalibrated RNG and SA models decrease the prediction error between 11-64% and 8?45%, respectively, regarding using the standard ones.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ATMOSPHERIC BOUNDARY LAYERS
dc.subject
CFD
dc.subject
GENETIC ALGORITHMS
dc.subject
LOW-RISE BUILDINGS
dc.subject
NATURAL VENTILATION
dc.subject
OPTIMIZATION
dc.subject
RANS TURBULENCE MODELS
dc.subject
WIND PRESSURE COEFFICIENTS
dc.subject.classification
Ingeniería de la Construcción

dc.subject.classification
Ingeniería Civil

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.subject.classification
Ingeniería Aeroespacial

dc.subject.classification
Ingeniería Mecánica

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Optimization of RANS turbulence models using genetic algorithms to improve the prediction of wind pressure coefficients on low-rise buildings
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-09-25T19:07:32Z
dc.journal.volume
193
dc.journal.pagination
103978 1-14
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Gimenez, Juan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
dc.description.fil
Fil: Bre, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
dc.journal.title
Journal of Wind Engineering and Industrial Aerodynamics

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jweia.2019.103978
Archivos asociados