Mostrar el registro sencillo del ítem
dc.contributor.author
Colabella, Lucas
dc.contributor.author
Cisilino, Adrian Pablo
dc.contributor.author
Fachinotti, Victor Daniel
dc.contributor.author
Kowalczyk, Piotr
dc.date.available
2020-10-12T19:29:37Z
dc.date.issued
2019-02
dc.identifier.citation
Colabella, Lucas; Cisilino, Adrian Pablo; Fachinotti, Victor Daniel; Kowalczyk, Piotr; Multiscale design of elastic solids with biomimetic cancellous bone cellular microstructures; Springer; Structural and Multidisciplinary Optimization; 60; 2; 2-2019; 639-661
dc.identifier.issn
1615-147X
dc.identifier.uri
http://hdl.handle.net/11336/115741
dc.description.abstract
Natural (or biological) materials usually achieve outstanding mechanical performances. In particular, cancellous bone presents a high stiffness/strength to weight ratio, so its structure inspires the development of novel ultra-light cellular materials. A multiscale method for the design of elastic solids with a cancellous bone parameterized biomimetic microstructure is introduced in this work. The method combines a finite element model to evaluate the stiffness of the body at the macroscale with a gradient-based nonlinear constrained optimization solver to obtain the optimal values of the microparameters and microstructure orientation over the body domain. The most salient features of the implementation are an offline response surface methodology for the evaluation of the microstructure elastic tensor in terms of the microparameters, an adjoint method for the computation of the sensitivity of the macroscopic stiffness to the microparameters, a quasi-Newton approximation for the evaluation of the Hessian matrix of the nonlinear optimizer, and a distance-weighted filter of the microparameters to remediate checkerboard effects. The settings of the above features, the optimizer termination options, and the initial values of the microparameters are investigated for the best performance of the method. The effectiveness of the method is demonstrated for several examples, whose results are compared with the reference solutions calculated using a SIMP method. The method shows to be effective; it attains results coherent with SIMP approaches in terms of stiffness and spatial material distribution. The good performance of the multiscale method is attributed to the capability of the parameterized mimetic microstructure to attain bulk and shear moduli that are close to the Hashin-Shtrikman upper bounds over the complete solid volume fraction range.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BIOMIMETIC MATERIALS
dc.subject
CANCELLOUS BONE
dc.subject
INTERIOR-POINT OPTIMIZER
dc.subject
MULTISCALE OPTIMIZATION
dc.subject
PARAMETERIZED MICROSTRUCTURE
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Multiscale design of elastic solids with biomimetic cancellous bone cellular microstructures
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-09-25T19:07:50Z
dc.journal.volume
60
dc.journal.number
2
dc.journal.pagination
639-661
dc.journal.pais
Alemania
dc.description.fil
Fil: Colabella, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
dc.description.fil
Fil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
dc.description.fil
Fil: Fachinotti, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
dc.description.fil
Fil: Kowalczyk, Piotr. Institute Of Fundamental Technological Research Of The Polish Academy Of Sciences; Polonia
dc.journal.title
Structural and Multidisciplinary Optimization
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00158-019-02229-3
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00158-019-02229-3
Archivos asociados