Mostrar el registro sencillo del ítem

dc.contributor.author
Valdés Hernández, Pedro A.  
dc.contributor.author
Von Ellenrieder, Nicolás  
dc.contributor.author
Ojeda Gonzalez, Alejandro  
dc.contributor.author
Kochen, Sara Silvia  
dc.contributor.author
Alemán Gómez, Yasser  
dc.contributor.author
Muravchik, Carlos Horacio  
dc.contributor.author
Valdés Sosa, Pedro A.  
dc.date.available
2020-09-29T19:42:19Z  
dc.date.issued
2009-12-15  
dc.identifier.citation
Valdés Hernández, Pedro A.; Von Ellenrieder, Nicolás; Ojeda Gonzalez, Alejandro; Kochen, Sara Silvia; Alemán Gómez, Yasser; et al.; Approximate average head models for EEG source imaging; Elsevier Science; Journal of Neuroscience Methods; 185; 1; 15-12-2009; 125-132  
dc.identifier.issn
0165-0270  
dc.identifier.uri
http://hdl.handle.net/11336/115109  
dc.description.abstract
We examine the performance of approximate models (AM) of the head in solving the EEG inverse problem. The AM are needed when the individual’s MRI is not available. We simulate the electric potential distribution generated by cortical sources for a large sample of 305 subjects, and solve the inverse problem with AM. Statistical comparisons are carried out with the distribution of the localization errors. We propose several new AM. These are the average of many individual realistic MRI-based models, such as surface-based models or lead fields. We demonstrate that the lead fields of the AM should be calculated considering source moments not constrained to be normal to the cortex. We also show that the imperfect anatomical correspondence between all cortices is the most important cause of localization errors. Our average models perform better than a random individual model or the usual average model in the MNI space. We also show that a classification based on race and gender or head size before averaging does not significantly improve the results. Our average models are slightly better than an existing AM with shape guided by measured individual electrode positions, and have the advantage of not requiring such measurements. Among the studied models, the Average Lead Field seems the most convenient tool in large and systematical clinical and research studies demanding EEG source localization, when MRI are unavailable. This AM does not need a strict alignment between head models, and can therefore be easily achieved for any type of head modeling approach.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
APPROXIMATE HEAD MODEL  
dc.subject
AVERAGE  
dc.subject
BEM  
dc.subject
EEG CUBAN BRAIN MAPPING PROJECT  
dc.subject
ELECTRODE MEASUREMENT  
dc.subject
LEAD FIELD  
dc.subject
MNI  
dc.subject
SLORETA  
dc.subject
THIN PLATE SPLINE  
dc.subject.classification
Neurología Clínica  
dc.subject.classification
Medicina Clínica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Approximate average head models for EEG source imaging  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-09-11T19:45:55Z  
dc.journal.volume
185  
dc.journal.number
1  
dc.journal.pagination
125-132  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Valdés Hernández, Pedro A.. Centro Cubano de Neurociencias; Cuba  
dc.description.fil
Fil: Von Ellenrieder, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina  
dc.description.fil
Fil: Ojeda Gonzalez, Alejandro. Centro Cubano de Neurociencias; Cuba  
dc.description.fil
Fil: Kochen, Sara Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentina  
dc.description.fil
Fil: Alemán Gómez, Yasser. Centro Cubano de Neurociencias; Cuba  
dc.description.fil
Fil: Muravchik, Carlos Horacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.description.fil
Fil: Valdés Sosa, Pedro A.. Centro Cubano de Neurociencias; Cuba  
dc.journal.title
Journal of Neuroscience Methods  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S016502700900497X?via%3Dihub  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jneumeth.2009.09.005