Artículo
Generalized Cauchy means
Fecha de publicación:
01/2015
Editorial:
Springer
Revista:
Aequationes Mathematicae
ISSN:
0001-9054
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Given two means M and N, the operator MM,NMM,N assigning to a given mean μ the mean MM,N(μ)(x,y)=M(μ(x,N(x,y)),μ(N(x,y),y)) was defined in Berrone and Moro (Aequationes Math 60:1–14, 2000) in connection with Cauchy means: the Cauchy mean generated by the pair f, g of continuous and strictly monotonic functions is the unique solution μ to the fixed point equation MA(f),A(g)(μ)=μ, where A(f) and A(g) are the quasiarithmetic means respectively generated by f and g. In this article, the operator MM,NMM,N is studied under less restrictive conditions and a general fixed point theorem is derived from an explicit formula for the iterates MnM,NMM,Nn . The concept of class of generalized Cauchy means associated to a given family of mixing pairs of means is introduced and some distinguished families of pairs are presented. The question of equality in these classes of means remains a challenging open problem.
Palabras clave:
Cauchy Means
,
Iteration of Operators
,
Fixed Points
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Berrone, Lucio Renato; Generalized Cauchy means; Springer; Aequationes Mathematicae; 90; 2; 1-2015; 307-328
Compartir
Altmétricas