Artículo
Better estimates of soil carbon from geographical data: a revised global approach
Duarte-Guardia, Sandra; Peri, Pablo Luis
; Amelung, Wulf; Sheil, Douglas; Laffan, Shawn W.; Borchard, Nils; Bird, Michael I.; Dieleman, Wouter; Pepper, David A.; Zutta, Brian; Jobbagy, Esteban; Silva, Lucas C. R.; Bonser, Stephen P.; Ladd, Brenton; Berhongaray, Gonzalo
; Piñeiro, Gervasio
; Martinez, Maria-Jose; Cowie, Annette L.; Ladd, Brenton
Fecha de publicación:
01/03/2019
Editorial:
Springer
Revista:
Mitigation And Adaptation Strategies For Global Change
ISSN:
1381-2386
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Soils hold the largest pool of organic carbon (C) on Earth; yet, soil organic carbon (SOC) reservoirs are not well represented in climate change mitigation strategies because our database for ecosystems where human impacts are minimal is still fragmentary. Here, we provide a tool for generating a global baseline of SOC stocks. We used partial least square (PLS) regression and available geographic datasets that describe SOC, climate, organisms, relief, parent material and time. The accuracy of the model was determined by the root mean square deviation (RMSD) of predicted SOC against 100 independent measurements. The best predictors were related to primary productivity, climate, topography, biome classification, and soil type. The largest C stocks for the top 1 m were found in boreal forests (254 ± 14.3 t ha−1) and tundra (310 ± 15.3 t ha−1). Deserts had the lowest C stocks (53.2 ± 6.3 t ha−1) and statistically similar C stocks were found for temperate and Mediterranean forests (142 - 221 t ha−1), tropical and subtropical forests (94 - 143 t ha−1) and grasslands (99-104 t ha−1). Solar radiation, evapotranspiration, and annual mean temperature were negatively correlated with SOC, whereas soil water content was positively correlated with SOC. Our model explained 49% of SOC variability, with RMSD (0.68) representing approximately 14% of observed C stock variance, overestimating extremely low and underestimating extremely high stocks, respectively. Our baseline PLS predictions of SOC stocks can be used for estimating the maximum amount of C that may be sequestered in soils across biomes.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos(IFEVA)
Articulos de INST.D/INV.FISIOLOGICAS Y ECO.VINCULADAS A L/AGRIC
Articulos de INST.D/INV.FISIOLOGICAS Y ECO.VINCULADAS A L/AGRIC
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Duarte-Guardia, Sandra; Peri, Pablo Luis; Amelung, Wulf; Sheil, Douglas; Laffan, Shawn W.; et al.; Better estimates of soil carbon from geographical data: a revised global approach; Springer; Mitigation And Adaptation Strategies For Global Change; 24; 3; 1-3-2019; 355-372
Compartir
Altmétricas