Mostrar el registro sencillo del ítem
dc.contributor.author
Casasanta Garcia, Lucianne
dc.contributor.author
Kamsu Foguem, Bernard
dc.date.available
2020-09-16T13:18:35Z
dc.date.issued
2019-05
dc.identifier.citation
Casasanta Garcia, Lucianne; Kamsu Foguem, Bernard; BIM-oriented data mining for thermal performance of prefabricated buildings; Elsevier Science; Ecological Informatics; 51; 5-2019; 61-72
dc.identifier.issn
1574-9541
dc.identifier.uri
http://hdl.handle.net/11336/114074
dc.description.abstract
The use of energy efficiency procedures is a typical practice in building construction process that creates a huge amount of data regarding the building. This is particularly valid in structures which include complex collaborations, for example, ventilation, sunlight-based increases, inner additions, and warm mass. This paper proposes a new approach for automating building construction when improving their energy efficiency, aiming to foresee comfort levels based on Heating, Ventilating, Air Conditioning (HVAC), constructive systems performance, environmental conditions, and occupant behavior. More specifically, it presents a research work about thermal performance of prefabricated construction systems developed by an Argentine enterprise called Astori, using two Knowledge Discovery in Databases (KDD) processes to extract knowledge. In this context, Building Information Modeling (BIM) will give data to support the calculation to outline goal levels of a sustainable building performance concerning classification systems. The data were collected from a project in Uruguay referring to the construction systems and the energy efficiency of the building. The data mining tool SPMF was used to test the performance of classification and its use in prediction. Particularly, FP-Growth Algorithm and Clustering methodologies were used to analyze a combination of ambient conditions, in order to compare them using Revit© software. The results generated by these methods can be generalized for a set of buildings, according to the objective to be achieved concerning the thermal building performance.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ASSOCIATION RULES
dc.subject
BUILDING INFORMATION
dc.subject
CLUSTERING
dc.subject
DATA MINING
dc.subject
GREEN BUILDINGS
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
BIM-oriented data mining for thermal performance of prefabricated buildings
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-08-05T16:43:30Z
dc.journal.volume
51
dc.journal.pagination
61-72
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Casasanta Garcia, Lucianne. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; Argentina
dc.description.fil
Fil: Kamsu Foguem, Bernard. Ecole Nationale d'Ingénieurs de Tarbes. Laboratoire Génie de Production; Francia
dc.journal.title
Ecological Informatics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1574954118302929
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecoinf.2019.02.012
Archivos asociados