Mostrar el registro sencillo del ítem

dc.contributor.author
Casasanta Garcia, Lucianne  
dc.contributor.author
Kamsu Foguem, Bernard  
dc.date.available
2020-09-16T13:18:35Z  
dc.date.issued
2019-05  
dc.identifier.citation
Casasanta Garcia, Lucianne; Kamsu Foguem, Bernard; BIM-oriented data mining for thermal performance of prefabricated buildings; Elsevier Science; Ecological Informatics; 51; 5-2019; 61-72  
dc.identifier.issn
1574-9541  
dc.identifier.uri
http://hdl.handle.net/11336/114074  
dc.description.abstract
The use of energy efficiency procedures is a typical practice in building construction process that creates a huge amount of data regarding the building. This is particularly valid in structures which include complex collaborations, for example, ventilation, sunlight-based increases, inner additions, and warm mass. This paper proposes a new approach for automating building construction when improving their energy efficiency, aiming to foresee comfort levels based on Heating, Ventilating, Air Conditioning (HVAC), constructive systems performance, environmental conditions, and occupant behavior. More specifically, it presents a research work about thermal performance of prefabricated construction systems developed by an Argentine enterprise called Astori, using two Knowledge Discovery in Databases (KDD) processes to extract knowledge. In this context, Building Information Modeling (BIM) will give data to support the calculation to outline goal levels of a sustainable building performance concerning classification systems. The data were collected from a project in Uruguay referring to the construction systems and the energy efficiency of the building. The data mining tool SPMF was used to test the performance of classification and its use in prediction. Particularly, FP-Growth Algorithm and Clustering methodologies were used to analyze a combination of ambient conditions, in order to compare them using Revit© software. The results generated by these methods can be generalized for a set of buildings, according to the objective to be achieved concerning the thermal building performance.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ASSOCIATION RULES  
dc.subject
BUILDING INFORMATION  
dc.subject
CLUSTERING  
dc.subject
DATA MINING  
dc.subject
GREEN BUILDINGS  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
BIM-oriented data mining for thermal performance of prefabricated buildings  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-08-05T16:43:30Z  
dc.journal.volume
51  
dc.journal.pagination
61-72  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Casasanta Garcia, Lucianne. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; Argentina  
dc.description.fil
Fil: Kamsu Foguem, Bernard. Ecole Nationale d'Ingénieurs de Tarbes. Laboratoire Génie de Production; Francia  
dc.journal.title
Ecological Informatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1574954118302929  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecoinf.2019.02.012