Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Arboricity, h-Index, and Dynamic Algorithms

Lin, Min ChihIcon ; Soulignac, Francisco JuanIcon ; Szwarcfiter, Jayme L.
Fecha de publicación: 04/2012
Editorial: Elsevier Science
Revista: Theoretical Computer Science
ISSN: 0304-3975
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

We propose a new data structure for manipulating graphs, called -graph, which is particularly suited for designing dynamic algorithms. The structure itself is simple, consisting basically of a triple of elements, for each vertex of the graph. The overall size of all triples is , for a graph with vertices and edges. We describe algorithms for performing the basic operations related to dynamic applications, as insertions and deletions of vertices or edges, and adjacency queries. The data structure employs a technique first described by Chiba and Nishizeki [Chiba, Nishizeki, Arboricity and subgraph listing algorithms, SIAM J. Comput. 14 (1) (1985) 210–223], and relies on the arboricity of graphs. Using the proposed data structure, we describe several dynamic algorithms for solving problems as listing the cliques of a given size, recognizing diamond-free graphs, and finding simple, simplicial and dominated vertices. These algorithms are the first of their kind to be proposed in the literature. In fact, the dynamic algorithms for the above problems lead directly to new static algorithms, and using the data structure we also design new static algorithms for the problems of counting subgraphs of size 4, recognizing cop-win graphs and recognizing strongly chordal graphs. The complexities of all of the proposed static algorithms improve over the complexities of the so far existing algorithms, for graphs of low arboricity. In addition, for the problems of counting subgraphs of size 4 and recognizing diamond-free graphs, the improvement is general. which is particularly suited for designing dynamic algorithms. The structure itself is simple, consisting basically of a triple of elements, for each vertex of the graph. The overall size of all triples is O(n+m), for a graph with n vertices and m edges. We describe algorithms for performing the basic operations related to dynamic applications, as insertions and deletions of vertices or edges, and adjacency queries. The data structure employs a technique first described by Chiba and Nishizeki [Chiba, Nishizeki, Arboricity and subgraph listing algorithms, SIAM J. Comput. 14 (1) (1985) 210–223], and relies on the arboricity of graphs. Using the proposed data structure, we describe several dynamic algorithms for solving problems as listing the cliques of a given size, recognizing diamond-free graphs, and finding simple, simplicial and dominated vertices. These algorithms are the first of their kind to be proposed in the literature. In fact, the dynamic algorithms for the above problems lead directly to new static algorithms, and using the data structure we also design new static algorithms for the problems of counting subgraphs of size 4, recognizing cop-win graphs and recognizing strongly chordal graphs. The complexities of all of the proposed static algorithms improve over the complexities of the so far existing algorithms, for graphs of low arboricity. In addition, for the problems of counting subgraphs of size 4 and recognizing diamond-free graphs, the improvement is general.
Palabras clave: ARBORICITY , COP-WIN GRAPHS , DATA STRUCTURES , DIAMOND-FREE GRAPHS , DYNAMIC ALGORITHMS , H-INDEX , STRONGLY CHORDAL GRAPHS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 320.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/113567
DOI: http://dx.doi.org/10.1016/j.tcs.2011.12.006
URL: https://www.sciencedirect.com/science/article/pii/S0304397511009662
URL: https://arxiv.org/abs/1005.2211
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Lin, Min Chih; Soulignac, Francisco Juan; Szwarcfiter, Jayme L.; Arboricity, h-Index, and Dynamic Algorithms; Elsevier Science; Theoretical Computer Science; 426-427; 4-2012; 75-90
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES