Artículo
Strongly isospectral manifolds with nonisomorphic cohomology rings
Fecha de publicación:
12/2013
Editorial:
European Mathematical Society
Revista:
Revista Matematica Iberoamericana
ISSN:
0213-2230
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
For any n≥7n≥7, k≥3k≥3, we give pairs of compact flat nn-manifolds MM, M′M′ with holonomy groups Zk2Z2k, that are strongly isospectral, hence isospectral on pp-forms for all values of pp, having nonisomorphic cohomology rings. Moreover, if nn is even, MM is Kähler while M′M′ is not. Furthermore, with the help of a computer program we show the existence of large Sunada isospectral families; for instance, for n=24n=24 and k=3k=3 there is a family of eight compact flat manifolds (four of them Kähler) having very different cohomology rings. In particular, the cardinalities of the sets of primitive forms are different for all manifolds
Palabras clave:
Isospectral
,
Cohomology Rings
,
Primitive Forms
,
Flat Manifolds
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Lauret, Emilio Agustin; Miatello, Roberto Jorge; Rossetti, Juan Pablo; Strongly isospectral manifolds with nonisomorphic cohomology rings; European Mathematical Society; Revista Matematica Iberoamericana; 29; 4; 12-2013; 611-634
Compartir