Artículo
Local Hardy spaces with variable exponents associated with non-negative self-adjoint operators satisfying Gaussian estimates
Fecha de publicación:
07/2020
Editorial:
Springer
Revista:
The Journal Of Geometric Analysis
ISSN:
1050-6926
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we introduce variable exponent local Hardy spaces $hLp$ associated with a non-negative self-adjoint operator $L$. We assume that, for every $t>0$, the operator $e^{-tL}$ has an integral representation whose kernel satisfies a Gaussian upper bound. We define $hLp$ by using an area square integral involving the semigroup ${e^{-tL}}_{t>0}$. A molecular characterization of $hLp$ is established. As an application of the molecular characterization we prove that $hLp$ coincides with the (global) Hardy space $HLp$ provided that $0$ does not belong to the spectrum of $L$. Also, we show that $hLp=H_{L+I}^{p(cdot)}(mathbb R^n)$.
Palabras clave:
HARDY SPACES
,
MOLECULES
,
LOCAL
,
VARIABLE EXPONENT
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Almeida, Víctor; Betancor, Jorge J.; Dalmasso, Estefanía Dafne; Rodríguez-Mesa, Lourdes; Local Hardy spaces with variable exponents associated with non-negative self-adjoint operators satisfying Gaussian estimates; Springer; The Journal Of Geometric Analysis; 30; 7-2020; 3275-3330
Compartir
Altmétricas